scholarly journals Statin Induction of Liver Fatty Acid-Binding Protein (L-FABP) Gene Expression Is Peroxisome Proliferator-activated Receptor-α-dependent

2004 ◽  
Vol 279 (44) ◽  
pp. 45512-45518 ◽  
Author(s):  
Jean-François Landrier ◽  
Charles Thomas ◽  
Jacques Grober ◽  
Hélène Duez ◽  
Frédéric Percevault ◽  
...  

Statins are drugs widely used in humans to treat hypercholesterolemia. Statins act by inhibiting cholesterol synthesis resulting in the activation of the transcription factor sterol-responsive element-binding protein-2 that controls the expression of genes involved in cholesterol homeostasis. Statin therapy also decreases plasma triglyceride and non-esterified fatty acid levels, but the mechanism behind this effect remains more elusive. Liver fatty acid-binding protein (L-FABP) plays a role in the influx of long-chain fatty acids into hepatocytes. Here we show that L-FABP is a target for statins. In rat hepatocytes, simvastatin treatment induced L-FABP mRNA levels in a dose-dependent manner. Moreover, L-FABP promoter activity was induced by statin treatment. Progressive 5′-deletion analysis revealed that the peroxisome proliferator-activated receptor (PPAR)-responsive element located at position –67/–55 was responsible for the statin-mediated transactivation of the rat L-FABP promoter. Moreover, treatment with simvastatin and the PPARα agonist Wy14,649 resulted in a synergistic induction of L-FABP expression (mRNA and protein) in rat Fao hepatoma cells. This effect was also observedin vivoin wild-type mice but not in PPARα-null animals demonstrating the direct implication of PPARα in L-FABP regulation by statin treatment. Statin treatment resulted in a rise in PPARα mRNA levels bothin vitroandin vivoand activated the mouse PPARα promoter in a reporter assay. Altogether, these data demonstrate that L-FABP expression is up-regulated by statins through a mechanism involving PPARα. Moreover, PPARα might be a statin target gene. These effects might contribute to the triglyceride/non-esterified fatty acid-lowering properties of statins.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4995
Author(s):  
Su Ji Bae ◽  
Ji Eun Kim ◽  
Yun Ju Choi ◽  
Su Jin Lee ◽  
Jeong Eun Gong ◽  
...  

The efficacy of α-cubebenoate isolated from Schisandra chinensis has been previously studied in three disease areas, namely inflammation, sepsis, and allergy, and its role in other diseases is still being explored. To identify the novel function of α-cubebenoate on lipid metabolism and related inflammatory response, alterations in fat accumulation, lipogenesis, lipolysis, and inflammasome activation were measured in 3T3-L1 preadipocytes and primary adipocytes treated with α-cubebenoate. Lipid accumulation significantly decreased in MDI (3-isobutyl-1-methylxanthine, dexamethasone, and insulin)-stimulated 3T3-L1 adipocytes treated with α-cubebenoate without any significant cytotoxicity. The mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT-enhancer binding protein (C/EBP) α for adipogenesis, as well as adipocyte fatty acid binding protein 2 (aP2) and fatty acid synthetase (FAS) for lipogenesis, were reduced after α-cubebenoate treatment, while cell cycle arrest at G2/M stage was restored in the same group. α-cubebenoate treatment induced glycerol release in primary adipocytes and enhanced expression of lipolytic proteins (HSL, perilipin, and ATGL) expression in MDI-stimulated 3T3-L1 adipocytes. Inflammasome activation and downstream cytokines expression were suppressed with α-cubebenoate treatment, but the expression of insulin receptor signaling factors was remarkably increased by α-cubebenoate treatment in MDI-stimulated 3T3-L1 adipocytes. These results indicate that α-cubebenoate may play a novel role as lipogenesis inhibitor, lipolysis stimulator, and inflammasome suppressor in MDI-stimulated 3T3-L1 adipocytes. Our results provide the possibility that α-cubebenoate can be considered as one of the candidates for obesity management.


2013 ◽  
Vol 33 (7) ◽  
pp. 1019-1028 ◽  
Author(s):  
Margarita Vida ◽  
Antonia Serrano ◽  
Miguel Romero-Cuevas ◽  
Francisco J. Pavón ◽  
Águeda González-Rodriguez ◽  
...  

2010 ◽  
Vol 51 (11) ◽  
pp. 3103-3116 ◽  
Author(s):  
Heather A. Hostetler ◽  
Madhumitha Balanarasimha ◽  
Huan Huang ◽  
Matthew S. Kelzer ◽  
Alagammai Kaliappan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document