scholarly journals Nuclear Translocation of Phospholipase C-δ1 Is Linked to the Cell Cycle and Nuclear Phosphatidylinositol 4,5-Bisphosphate

2005 ◽  
Vol 280 (23) ◽  
pp. 22060-22069 ◽  
Author(s):  
Jonathan D. Stallings ◽  
Edward G. Tall ◽  
Srinivas Pentyala ◽  
Mario J. Rebecchi

Nuclear phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, fluctuate throughout the cell cycle and are linked to proliferation and differentiation. Here we report that phospholipase C-δ1 accumulates in the nucleus at the G1/S boundary and in G0 phases of the cell cycle. Furthermore, as wild-type protein accumulated in the nucleus, nuclear phosphatidylinositol 4,5-bisphosphate levels were elevated 3–5-fold, whereas total levels were decreased compared with asynchronous cultures. To test whether phosphatidylinositol 4,5-bisphosphate binding is important during this process, we introduced a R40D point mutation within the pleckstrin homology domain of phospholipase C-δ1, which disables high affinity phosphatidylinositol 4,5-bisphosphate binding, and found that nuclear translocation was significantly reduced at G1/S and in G0. These results demonstrate a cell cycle-dependent compartmentalization of phospholipase C-δ1 and support the idea that relative levels of phosphoinositides modulate the portioning of phosphoinositide-binding proteins between the nucleus and other compartments.

1996 ◽  
Vol 109 (2) ◽  
pp. 319-326 ◽  
Author(s):  
N. Okishio ◽  
Y. Adachi ◽  
M. Yanagida

The nda1+ and nda4+ genes of the fission yeast Schizosaccharomyces pombe encode proteins similar to budding yeast MCM2 and MCM5/CDC46, respectively, which are required for the early stages of DNA replication. The budding yeast Mcm proteins display cell-cycle dependent localization. They are present in the nucleus specifically from late M phase until the beginning of S phase, so that they were suggested to be components of a replication licensing factor, a positive factor for the onset of replication, which is thought to be inactivated after use, thus restricting replication to only once in a cell cycle. In the present study, we raised antibodies against Nda1 or Nda4 and identified 115 kDa and 80 kDa proteins, respectively. Their immunolocalization was examined in wild-type cells and in various cell-cycle mutants. Both Nda1 and Nda4 proteins remained primarily in the nucleus throughout the cell cycle. In mutants arrested in G1, S, and G2 phases, these proteins were also enriched in the nucleus. These results indicate that the dramatic change in subcellular localization as seen in budding yeast is not essential in fission yeast for the functions of Nda1 and Nda4 proteins to be executed. The histidine-tagged nda1+ gene was constructed and integrated into the chromosome to replace the wild-type nda1+ gene. The resulting His-tagged Nda1 protein was adsorbed to the Ni-affinity column, and co-eluted with the untagged Nda4 protein, suggesting that they formed a complex.


2005 ◽  
Vol 25 (5) ◽  
pp. 1900-1911 ◽  
Author(s):  
Anna Santamaría ◽  
Elisabeth Castellanos ◽  
Valentí Gómez ◽  
Patricia Benedit ◽  
Jaime Renau-Piqueras ◽  
...  

ABSTRACT PTOV1 is a mitogenic protein that shuttles between the nucleus and the cytoplasm in a cell cycle-dependent manner. It consists of two homologous domains arranged in tandem that constitute a new class of protein modules. We show here that PTOV1 interacts with the lipid raft protein flotillin-1, with which it copurifies in detergent-insoluble floating fractions. Flotillin-1 colocalized with PTOV1 not only at the plasma membrane but, unexpectedly, also in the nucleus, as demonstrated by immunocytochemistry and subcellular fractionation of endogenous and exogenous flotillin-1. Flotillin-1 entered the nucleus concomitant with PTOV1, shortly before the initiation of the S phase. Protein levels of PTOV1 and flotillin-1 oscillated during the cell cycle, with a peak in S. Depletion of PTOV1 significantly inhibited nuclear localization of flotillin-1, whereas depletion of flotillin-1 did not affect nuclear localization of PTOV1. Depletion of either protein markedly inhibited cell proliferation under basal conditions. Overexpression of PTOV1 or flotillin-1 strongly induced proliferation, which required their localization to the nucleus, and was dependent on the reciprocal protein. These observations suggest that PTOV1 assists flotillin-1 in its translocation to the nucleus and that both proteins are required for cell proliferation.


2006 ◽  
Vol 16 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Jean Schneikert ◽  
Annette Grohmann ◽  
Jürgen Behrens

2016 ◽  
Vol 3 (12) ◽  
pp. 160578 ◽  
Author(s):  
Mohammad Soltani ◽  
Abhyudai Singh

Expression of many genes varies as a cell transitions through different cell-cycle stages. How coupling between stochastic expression and cell cycle impacts cell-to-cell variability (noise) in the level of protein is not well understood. We analyse a model where a stable protein is synthesized in random bursts, and the frequency with which bursts occur varies within the cell cycle. Formulae quantifying the extent of fluctuations in the protein copy number are derived and decomposed into components arising from the cell cycle and stochastic processes. The latter stochastic component represents contributions from bursty expression and errors incurred during partitioning of molecules between daughter cells. These formulae reveal an interesting trade-off: cell-cycle dependencies that amplify the noise contribution from bursty expression also attenuate the contribution from partitioning errors. We investigate the existence of optimum strategies for coupling expression to the cell cycle that minimize the stochastic component. Intriguingly, results show that a zero production rate throughout the cell cycle, with expression only occurring just before cell division, minimizes noise from bursty expression for a fixed mean protein level. By contrast, the optimal strategy in the case of partitioning errors is to make the protein just after cell division. We provide examples of regulatory proteins that are expressed only towards the end of the cell cycle, and argue that such strategies enhance robustness of cell-cycle decisions to the intrinsic stochasticity of gene expression.


2021 ◽  
Author(s):  
Yuting Liu ◽  
Kehui Wang ◽  
Li Huang ◽  
Jicheng Zhao ◽  
Xinpeng Chen ◽  
...  

Centromere identity is defined by nucleosomes containing CENP-A, a histone H3 variant. The deposition of CENP-A at centromeres is tightly regulated in a cell-cycle-dependent manner. We previously reported that the spatiotemporal control of centromeric CENP-A incorporation is mediated by the phosphorylation of CENP-A Ser68. However, a recent report argued that Ser68 phosphoregulation is dispensable for accurate CENP-A loading. Here, we report that the substitution of Ser68 of endogenous CENP-A with either Gln68 or Glu68 severely impairs CENP-A deposition and cell viability. We also find that mice harboring the corresponding mutations are lethal. Together, these results indicate that the dynamic phosphorylation of Ser68 ensures cell-cycle-dependent CENP-A deposition and cell viability.


2000 ◽  
Vol 5 (4) ◽  
pp. 607-616 ◽  
Author(s):  
Stéphane Pyronnet ◽  
Lucien Pradayrol ◽  
Nahum Sonenberg

Sign in / Sign up

Export Citation Format

Share Document