scholarly journals Importance of a Surface Hydrophobic Pocket on Protein Phosphatase-1 Catalytic Subunit in Recognizing Cellular Regulators

2005 ◽  
Vol 280 (16) ◽  
pp. 15903-15911 ◽  
Author(s):  
Jennifer A. Gibbons ◽  
Douglas C. Weiser ◽  
Shirish Shenolikar

Cellular functions of protein phosphatase-1 (PP1), a major eukaryotic serine/threonine phosphatase, are defined by the association of PP1 catalytic subunits with endogenous protein inhibitors and regulatory subunits. Many PP1 regulators share a consensus RVXF motif, which docks within a hydrophobic pocket on the surface of the PP1 catalytic subunit. Although these regulatory proteins also possess additional PP1-binding sites, mutations of the RVXF sequence established a key role of this PP1-binding sequence in the function of PP1 regulators. WT PP1α, the C-terminal truncated PP1α-(1–306), a chimeric PP1α containing C-terminal sequences from PP2A, another phosphatase, PP1α-(1–306) with the RVXF-binding pocket substitutions L289R, M290K, and C291R, and PP2A were analyzed for their regulation by several mammalian proteins. These studies established that modifications of the RVXF-binding pocket had modest effects on the catalytic activity of PP1, as judged by recognition of substrates and sensitivity to toxins. However, the selected modifications impaired the sensitivity of PP1 to the inhibitor proteins, inhibitor-1 and inhibitor-2. In addition, they impaired the ability of PP1 to bind neurabin-I, the neuronal regulatory subunit, and GM, the skeletal muscle glycogen-targeting subunit. These data suggested that differences in RVXF interactions with the hydrophobic pocket dictate the affinity of PP1 for cellular regulators. Substitution of a distinct RVXF sequence in inhibitor-1 that enhanced its binding and potency as a PP1 inhibitor emphasized the importance of the RVXF sequence in defining the function of this and other PP1 regulators. Our studies suggest that the diversity of RVXF sequences provides for dynamic physiological regulation of PP1 functions in eukaryotic cells.

Endocrinology ◽  
2014 ◽  
Vol 155 (2) ◽  
pp. 380-391 ◽  
Author(s):  
Daleep K. Arora ◽  
Baker Machhadieh ◽  
Andrea Matti ◽  
Brian E. Wadzinski ◽  
Sasanka Ramanadham ◽  
...  

Existing evidence implicates regulatory roles for protein phosphatase 2A (PP2A) in a variety of cellular functions, including cytoskeletal remodeling, hormone secretion, and apoptosis. We report here activation of PP2A in normal rat islets and insulin-secreting INS-1 832/13 cells under the duress of hyperglycemic (HG) conditions. Small interfering RNA-mediated knockdown of the catalytic subunit of PP2A (PP2Ac) markedly attenuated glucose-induced activation of PP2A. HG, but not nonmetabolizable 3-O-methyl glucose or mannitol (osmotic control), significantly stimulated the methylation of PP2Ac at its C-terminal Leu-309, suggesting a novel role for this posttranslational modification in glucose-induced activation of PP2A. Moreover, knockdown of the cytosolic leucine carboxymethyl transferase 1 (LCMT1), which carboxymethylates PP2Ac, significantly attenuated PP2A activation under HG conditions. In addition, HG conditions, but not 3-O-methyl glucose or mannitol, markedly increased the expression of LCMT1. Furthermore, HG conditions significantly increased the expression of B55α, a regulatory subunit of PP2A, which has been implicated in islet dysfunction under conditions of oxidative stress and diabetes. Thapsigargin, a known inducer of endoplasmic reticulum stress, failed to exert any discernible effects on the carboxymethylation of PP2Ac, expression of LCMT1 and B55α, or PP2A activity, suggesting no clear role for endoplasmic reticulum stress in HG-induced activation of PP2A. Based on these findings, we conclude that exposure of the islet β-cell to HG leads to accelerated PP2A signaling pathway, leading to loss in glucose-induced insulin secretion.


1999 ◽  
Vol 380 (9) ◽  
pp. 1117-1120 ◽  
Author(s):  
Jürgen Götz ◽  
Wilfried Kues

AbstractProtein phosphatase 2A (PP2A) constitutes one of the major families of protein serine/threonine phosphatases found in all eukaryotic cells. PP2A holoenzymes are composed of a catalytic subunit complexed with a structural regulatory subunit of 65 kDa. These core subunits associate with regulatory subunits of various sizes to form different heterotrimers which have been purified and evaluated with regard to substrate specificity. In fully differentiated tissues PP2A expression levels are highest in the brain, however, relatively little is known about expression in the developing embryo.In order to determine the composition of PP2A catalytic subunits in the mouse, cDNAs were cloned and the genomic organization of PP2A Cα was determined.By a gene targeting approach in the mouse, we have previously shown that the absence of the major catalytic subunit of PP2A, Cα, resulted in embryonic lethality around embryonic day E6.5. No mesoderm was formed which implied that PP2A plays a crucial role in gastrulation.Here, we extended our studies and analyzed wildtype embryos for Cα expression at subsequent stages of development. After gastrulation is completed, we find high expression of Cα restricted to the neural folds, which suggests that PP2A plays an additional pivotal role in neurulation.


2002 ◽  
Vol 115 (2) ◽  
pp. 241-256 ◽  
Author(s):  
Patricia T. W. Cohen

Protein phosphatase 1 (PP1) is a major eukaryotic protein serine/threonine phosphatase that regulates an enormous variety of cellular functions through the interaction of its catalytic subunit (PP1c) with over fifty different established or putative regulatory subunits. Most of these target PP1c to specific subcellular locations and interact with a small hydrophobic groove on the surface of PP1c through a short conserved binding motif – the RVxF motif – which is often preceded by further basic residues. Weaker interactions may subsequently enhance binding and modulate PP1 activity/specificity in a variety of ways. Several putative targeting subunits do not possess an RVxF motif but nevertheless interact with the same region of PP1c. In addition, several ‘modulator’ proteins bind to PP1c but do not possess a domain targeting them to a specific location. Most are potent inhibitors of PP1c and possess at least two sites for interaction with PP1c, one of which is identical or similar to the RVxF motif.Regulation of PP1c in response to extracellular and intracellular signals occurs mostly through changes in the levels, conformation or phosphorylation status of targeting subunits. Understanding of the mode of action of PP1c complexes may facilitate development of drugs that target particular PP1c complexes and thereby modulate the phosphorylation state of a very limited subset of proteins.


2012 ◽  
Vol 214 (3) ◽  
pp. 437-443 ◽  
Author(s):  
Thangiah Geetha ◽  
Paul Langlais ◽  
Michael Caruso ◽  
Zhengping Yi

Skeletal muscle insulin resistance is an early abnormality in individuals with metabolic syndrome and type 2 diabetes (T2D). Insulin receptor substrate-1 (IRS1) plays a key role in insulin signaling, the function of which is regulated by both phosphorylation and dephosphorylation of tyrosine and serine/threonine residues. Numerous studies have focused on kinases in IRS1 phosphorylation and insulin resistance; however, the mechanism for serine/threonine phosphatase action in insulin signaling is largely unknown. Recently, we identified protein phosphatase 1 (PP1) regulatory subunit 12A (PPP1R12A) as a novel endogenous insulin-stimulated interaction partner of IRS1 in L6 myotubes. The current study was undertaken to better understand PPP1R12A's role in insulin signaling. Insulin stimulation promoted an interaction between the IRS1/p85 complex and PPP1R12A; however, p85 and PPP1R12A did not interact independent of IRS1. Moreover, kinase inhibition experiments indicated that insulin-induced interaction between IRS1 and PPP1R12A was reduced by treatment with inhibitors of phosphatidylinositide 3 kinase, PDK1, Akt, and mTOR/raptor but not MAPK. Furthermore, a novel insulin-stimulated IRS1 interaction partner, PP1 catalytic subunit (PP1cδ), was identified, and its interaction with IRS1 was also disrupted by inhibitors of Akt and mTOR/raptor. These results indicate that PPP1R12A and PP1cδ are new members of the insulin-stimulated IRS1 signaling complex, and the interaction of PPP1R12A and PP1cδ with IRS1 is dependent on Akt and mTOR/raptor activation. These findings provide evidence for the involvement of a particular PP1 complex, PPP1R12A/PP1cδ, in insulin signaling and may lead to a better understanding of dysregulated IRS1 phosphorylation in insulin resistance and T2D.


2018 ◽  
Vol 124 ◽  
pp. 108
Author(s):  
Katherina Alsina ◽  
Mohit Hulsurkar ◽  
Chunxia Yao ◽  
Barbara Langer ◽  
David Chiang ◽  
...  

2010 ◽  
Vol 426 (3) ◽  
pp. 355-364 ◽  
Author(s):  
Jofre Ferrer-Dalmau ◽  
Asier González ◽  
Maria Platara ◽  
Clara Navarrete ◽  
José L. Martínez ◽  
...  

Maintenance of cation homoeostasis is a key process for any living organism. Specific mutations in Glc7, the essential catalytic subunit of yeast protein phosphatase 1, result in salt and alkaline pH sensitivity, suggesting a role for this protein in cation homoeostasis. We screened a collection of Glc7 regulatory subunit mutants for altered tolerance to diverse cations (sodium, lithium and calcium) and alkaline pH. Among 18 candidates, only deletion of REF2 (RNA end formation 2) yielded increased sensitivity to these conditions, as well as to diverse organic toxic cations. The Ref2F374A mutation, which renders it unable to bind Glc7, did not rescue the salt-related phenotypes of the ref2 strain, suggesting that Ref2 function in cation homoeostasis is mediated by Glc7. The ref2 deletion mutant displays a marked decrease in lithium efflux, which can be explained by the inability of these cells to fully induce the Na+-ATPase ENA1 gene. The effect of lack of Ref2 is additive to that of blockage of the calcineurin pathway and might disrupt multiple mechanisms controlling ENA1 expression. ref2 cells display a striking defect in vacuolar morphogenesis, which probably accounts for the increased calcium levels observed under standard growth conditions and the strong calcium sensitivity of this mutant. Remarkably, the evidence collected indicates that the role of Ref2 in cation homoeostasis may be unrelated to its previously identified function in the formation of mRNA via the APT (for associated with Pta1) complex.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Srikanth Perike ◽  
Xander Wehrens ◽  
Dawood Darbar ◽  
Mark McCauley

Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia, and increases a patient’s stroke risk five-fold. Reduced atrial contractility (stunning) is observed in AF and contributes to stroke risk; however, the mechanisms responsible for atrial stunning in AF are unknown. Recent data from our laboratory indicate that protein phosphatase 1 (PP1) dephosphorylation of myosin light chain 2a (MLC2a) may contribute to atrial stunning in AF. Objective: To determine how the PP1 regulatory subunit 12C (PPP1R12C) and catalytic (PPP1c) subunits modify atrial sarcomere phosphorylation in AF. Methods: We evaluated the protein expression, binding and phosphorylation among PPP1R12C, PPP1c, and MLC2a in transfected HL-1 cells, murine atrial tissue (Pitx2null +/– mice, with a genetic predisposition AF), and in HEK cells. An inhibitor of PPP1R12C phosphorylation, BDP5290, was used to enhance the PPP1R12C-PPP1C interaction. Results: In Pitx2 null +/– mice, PPP1R12C was increased by 2-fold ( P <0.01) and associated with a 40% reduction in S-19-MLC2a phosphorylation versus WT mice ( P <0.058). BDP5290 increased PPP1R12C-PPP1C binding by >3-fold in HL-1 cells ( P <0.01). BDP5290 reduced MLC2a phosphorylation by 40% through an enhanced interaction with PPP1R12C by >3-fold in HEK cells ( P <0.01). Conclusion: In Pitx2 null+/- mice, increased expression of PPP1R12C is associated with PP1 holoenzyme targeting to sarcomeric MLC2a, and is associated with reduced S19-MLC2a phosphorylation. Additionally, BDP5290 enhances the PPP1R12C-PPP1C interaction and models PP1 activity in AF. Future studies will examine the effects of both AF and BDP5290 upon atrial contractility in vitro.


Sign in / Sign up

Export Citation Format

Share Document