scholarly journals Chondroitin Sulfate Characterized by the E-disaccharide Unit Is a Potent Inhibitor of Herpes Simplex Virus Infectivity and Provides the Virus Binding Sites on gro2C Cells

2005 ◽  
Vol 280 (37) ◽  
pp. 32193-32199 ◽  
Author(s):  
Kicki Bergefall ◽  
Edward Trybala ◽  
Maria Johansson ◽  
Toru Uyama ◽  
Satomi Naito ◽  
...  
2006 ◽  
Vol 281 (50) ◽  
pp. 38668-38674 ◽  
Author(s):  
Toru Uyama ◽  
Miho Ishida ◽  
Tomomi Izumikawa ◽  
Edward Trybala ◽  
Frank Tufaro ◽  
...  

2002 ◽  
Vol 13 (8) ◽  
pp. 2795-2809 ◽  
Author(s):  
Katinka Döhner ◽  
André Wolfstein ◽  
Ute Prank ◽  
Christophe Echeverri ◽  
Denis Dujardin ◽  
...  

After fusion of the viral envelope with the plasma membrane, herpes simplex virus type 1 (HSV1) capsids are transported along microtubules (MTs) from the cell periphery to the nucleus. The motor ATPase cytoplasmic dynein and its multisubunit cofactor dynactin mediate most transport processes directed toward the minus-ends of MTs. Immunofluorescence microscopy experiments demonstrated that HSV1 capsids colocalized with cytoplasmic dynein and dynactin. We blocked the function of dynein by overexpressing the dynactin subunit dynamitin, which leads to the disruption of the dynactin complex. We then infected such cells with HSV1 and measured the efficiency of particle binding, virus entry, capsid transport to the nucleus, and the expression of immediate-early viral genes. High concentrations of dynamitin and dynamitin-GFP reduced the number of viral capsids transported to the nucleus. Moreover, viral protein synthesis was inhibited, whereas virus binding to the plasma membrane, its internalization, and the organization of the MT network were not affected. We concluded that incoming HSV1 capsids are propelled along MTs by dynein and that dynein and dynactin are required for efficient viral capsid transport to the nucleus.


2013 ◽  
Vol 39 (2) ◽  
pp. 51-56 ◽  
Author(s):  
Masoumeh Varedi ◽  
Afagh Moattari ◽  
Zahra Amirghofran ◽  
Zohreh Karamizadeh ◽  
Hadi Feizi

2015 ◽  
Vol 89 (21) ◽  
pp. 11150-11158 ◽  
Author(s):  
Michael Seyffert ◽  
Daniel L. Glauser ◽  
Kurt Tobler ◽  
Oleg Georgiev ◽  
Rebecca Vogel ◽  
...  

Adeno-associated virus type 2 is known to inhibit replication of herpes simplex virus 1 (HSV-1). This activity has been linked to the helicase- and DNA-binding domains of the Rep68/Rep78 proteins. Here, we show that Rep68 can bind to consensus Rep-binding sites on the HSV-1 genome and that the Rep helicase activity can inhibit replication of any DNA if binding is facilitated. Therefore, we hypothesize that inhibition of HSV-1 replication involves direct binding of Rep68/Rep78 to the HSV-1 genome.


2005 ◽  
Vol 393 (2) ◽  
pp. 529-535 ◽  
Author(s):  
Joel R. Livingston ◽  
Michael R. Sutherland ◽  
Harvey M. Friedman ◽  
Edward L. G. Pryzdial

The HSV1 (herpes simplex virus type 1) surface has been shown recently to initiate blood coagulation by FVIIa (activated Factor VII)-dependent proteolytic activation of FX (Factor X). At least two types of direct FX–HSV1 interactions were suggested by observing that host cell-encoded tissue factor and virus-encoded gC (glycoprotein C) independently enhance FVIIa function on the virus. Using differential sedimentation to separate bound from free 125I-ligand, we report in the present study that, in the presence of Ca2+, FX binds directly to purified wild-type HSV1 with an apparent dissociation constant (Kd) of 1.5±0.4 μM and 206±24 sites per virus at saturation. The number of FX-binding sites on gC-deficient virus was reduced to 43±5, and the remaining binding had a lower Kd (0.7±0.2 μM), demonstrating an involvement of gC. Engineering gC back into the deficient strain or addition of a truncated soluble recombinant form of gC (sgC), increased the Kd and the number of binding sites. Consistent with a gC/FX stoichiometry of approximately 1:1, 121±6 125I-sgC molecules were found to bind per wild-type HSV1. In the absence of Ca2+, the number of FX-binding sites on the wild-type virus was similar to the gC-deficient strain in the presence of Ca2+. Furthermore, in the absence of Ca2+, direct sgC binding to HSV1 was insignificant, although sgC was observed to inhibit the FX–virus association, suggesting a Ca2+-independent solution-phase FX–sgC interaction. Cumulatively, these data demonstrate that gC constitutes one type of direct FX–HSV1 interaction, possibly providing a molecular basis for clinical correlations between recurrent infection and vascular pathology.


Sign in / Sign up

Export Citation Format

Share Document