scholarly journals Fumarate Reductase and Succinate Oxidase Activity ofEscherichia coliComplex II Homologs Are Perturbed Differently by Mutation of the Flavin Binding Domain

2006 ◽  
Vol 281 (16) ◽  
pp. 11357-11365 ◽  
Author(s):  
Elena Maklashina ◽  
Tina M. Iverson ◽  
Yelizaveta Sher ◽  
Violetta Kotlyar ◽  
Juni Andréll ◽  
...  
1980 ◽  
Vol 45 (2) ◽  
pp. 641-652
Author(s):  
Petr Zbořil

Semiquinone is an intermediary product of the oxidation of daphnetin (7,8-dihydroxycoumarin) and esculetin (6,7-dihydroxycoumarin) by diphenol oxidase; its concentration rapidly decreases. When the oxidation is effected by ferricytochrome c, the concentration of the semiquinone remains practically constant for a long period. Similarly, the ability of the products of daphnetin oxidation by diphenol oxidase to inhibit succinate oxidase activity in mitochondrial fragments rapidly decreases with time; the decrease is considerably slower in the case of cytochrome c. The inhibitory activity of the product decreases with time also during esculetin oxidation by ferricyanide. This indicates that the inhibitory effects must be ascribed predominantly to the semiquinone, the quinone is less efficient. The inhibition of succinate oxidase or succinate dehydrogenase was strongly decreased when the enzyme preparation of Keilin and Hartree was incubated with esculetin and ferricyanide in the presence of KCN or under anaerobic conditions. This demonstrates that the reaction of the inhibitor with the enzyme either involves subsequent oxidations or that the inhibitor preferentially reacts with the oxidized form of the sensitive component of the respiratory chain. The second alternative is very little probable since there is no correlation between the degree of inhibition and the binding of the inhibitor to mitochondrial fragments.


1980 ◽  
Vol 188 (1) ◽  
pp. 141-144 ◽  
Author(s):  
J Vanderleyden ◽  
C Peeters ◽  
H Verachtert ◽  
H Bertrand

The alternative-oxidase-mediated succinate oxidase activity of Neurospora crassa decreases drastically when mitochondria are fractionated into submitochondrial particles or treated with deoxycholate. The activity, however, can be completely restored in the presence of nucleoside 5′-monophosphates. The purine nucleoside 5′-monophosphates are more effective than the pyrimidine homologues. 5′-GMP gives a 10-fold stimulation of the alternative-oxidase-mediated succinate oxidase activity in submitochondrial particles. A comparison is made with the results obtained earlier with Moniliella tomentosa [Hanssens & Verachtert (1976) J. Bacteriol. 125, 825–835; Vanderleyden, Van Den Eynde & Verachtert (1980) Biochem. J. 186, 309–316].


2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Wei Luo ◽  
Chao Xue ◽  
Yuzheng Zhao ◽  
Huili Zhang ◽  
Zhiming Rao ◽  
...  

ABSTRACT Blakeslea trispora is an industrial fungal species used for large-scale production of carotenoids. However, B. trispora light-regulated physiological processes, such as carotenoid biosynthesis and phototropism, are not fully understood. In this study, we isolated and characterized three photoreceptor genes, btwc-1a, btwc-1b, and btwc-1c, in B. trispora. Bioinformatics analyses of these genes and their protein sequences revealed that the functional domains (PAS/LOV [Per-ARNT-Sim/light-oxygen-voltage] domain and zinc finger structure) of the proteins have significant homology to those of other fungal blue-light regulator proteins expressed by Mucor circinelloides and Neurospora crassa. The photoreceptor proteins were synthesized by heterologous expression in Escherichia coli. The chromogenic groups consisting of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) were detected to accompany BTWC-1 proteins by using high-performance liquid chromatography (HPLC) and fluorescence spectrometry, demonstrating that the proteins may be photosensitive. The absorbance changes of the purified BTWC-1 proteins seen under dark and light conditions indicated that they were light responsive and underwent a characteristic photocycle by light induction. Site-directed mutagenesis of the cysteine residual (Cys) in BTWC-1 did not affect the normal expression of the protein in E. coli but did lead to the loss of photocycle response, indicating that Cys represents a flavin-binding domain for photon detection. We then analyzed the functions of BTWC-1 proteins by complementing btwc-1a, btwc-1b, and btwc-1c into the counterpart knockout strains of M. circinelloides for each mcwc-1 gene. Transformation of the btwc-1a complement into mcwc-1a knockout strains restored the positive phototropism, while the addition of btwc-1c complement remedied the deficiency of carotene biosynthesis in the mcwc-1c knockout strains under conditions of illumination. These results indicate that btwc-1a and btwc-1c are involved in phototropism and light-inducible carotenogenesis. Thus, btwc-1 genes share a conserved flavin-binding domain and act as photoreceptors for control of different light transduction pathways in B. trispora. IMPORTANCE Studies have confirmed that light-regulated carotenogenesis is prevalent in filamentous fungi, especially in mucorales. However, few investigations have been done to understand photoinduced synthesis of carotenoids and related mechanisms in B. trispora, a well-known industrial microbial strains. In the present study, three photoreceptor genes in B. trispora were cloned, expressed, and characterized by bioinformatics and photoreception analyses, and then in vivo functional analyses of these genes were constructed in M. circinelloides. The results of this study will lead to a better understanding of photoreception and light-regulated carotenoid synthesis and other physiological responses in B. trispora.


Biochemistry ◽  
1999 ◽  
Vol 38 (7) ◽  
pp. 1977-1989 ◽  
Author(s):  
David L. Roberts ◽  
Denise Salazar ◽  
John P. Fulmer ◽  
Frank E. Frerman ◽  
Jung-Ja P. Kim

FEBS Letters ◽  
1971 ◽  
Vol 13 (5) ◽  
pp. 265-266 ◽  
Author(s):  
S.P.J. Albracht ◽  
H. Van Heerikhuizen ◽  
E.C. Slater

Biochemistry ◽  
2002 ◽  
Vol 41 (13) ◽  
pp. 4264-4272 ◽  
Author(s):  
L. M. Cunane ◽  
J. D. Barton ◽  
Z.-W. Chen ◽  
F. E. Welsh ◽  
S. K. Chapman ◽  
...  

Author(s):  
Lukas Goett-Zink ◽  
Anna Lena Toschke ◽  
Jan Petersen ◽  
Maria Mittag ◽  
Tilman Kottke

Sign in / Sign up

Export Citation Format

Share Document