scholarly journals Crystal Structures of Yeast β-Alanine Synthase Complexes Reveal the Mode of Substrate Binding and Large Scale Domain Closure Movements

2007 ◽  
Vol 282 (49) ◽  
pp. 36037-36047 ◽  
Author(s):  
Stina Lundgren ◽  
Birgit Andersen ◽  
Jure Piškur ◽  
Doreen Dobritzsch

β-Alanine synthase is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of uracil and thymine in higher organisms. The fold of the homodimeric enzyme from the yeast Saccharomyces kluyveri identifies it as a member of the AcyI/M20 family of metallopeptidases. Its subunit consists of a catalytic domain harboring a di-zinc center and a smaller dimerization domain. The present site-directed mutagenesis studies identify Glu159 and Arg322 as crucial for catalysis and His262 and His397 as functionally important but not essential. We determined the crystal structures of wild-type β-alanine synthase in complex with the reaction product β-alanine, and of the mutant E159A with the substrate N-carbamyl-β-alanine, revealing the closed state of a dimeric AcyI/M20 metallopeptidase-like enzyme. Subunit closure is achieved by a ∼30° rigid body domain rotation, which completes the active site by integration of substrate binding residues that belong to the dimerization domain of the same or the partner subunit. Substrate binding is achieved via a salt bridge, a number of hydrogen bonds, and coordination to one of the zinc ions of the di-metal center.

1997 ◽  
Vol 322 (2) ◽  
pp. 469-475 ◽  
Author(s):  
Hyuntae KIM ◽  
Myron K. JACOBSON ◽  
Véronique ROLLI ◽  
Josiane MÉNISSIER-de MURCIA ◽  
Joseph REINBOLT ◽  
...  

Photoaffinity labelling of the human poly(ADP-ribose) polymerase (PARP) catalytic domain (40 kDa) with the NAD+ photoaffinity analogue 2-azido-[α-32P]NAD+ has been used to identify NAD+-binding residues. In the presence of UV, photoinsertion of the analogue was observed with a stoichiometry of 0.73 mol of 2-azido-[α-32P]NAD+ per mol of catalytic domain. Competition experiments indicated that 3-aminobenzamide strongly protected the insertion site. Residues binding the adenine ring of NAD+ were identified by trypsin digestion and boronate affinity chromatography in combination with reverse-phase HPLC. Two major NAD+-binding residues, Trp1014 of peptide Thr1011–Trp1014 and Lys893 of peptide Ile879 –Lys893, were identified. The site-directed mutagenesis of these two residues revealed that Lys893, but not Trp1014, is critical for activity. The close positioning of Lys893 near the adenine ring of NAD+ has been confirmed by the recently solved crystallographic structure of the chicken PARP catalytic domain [Ruf, Ménissier-de Murcia, de Murcia and Schulz (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 7481–7485].


1989 ◽  
Vol 9 (4) ◽  
pp. 1406-1414
Author(s):  
A A McCracken ◽  
K B Kruse ◽  
J L Brown

Human alpha-1-proteinase inhibitor (A1PI) deficiency, associated with the Z-variant A1PI (A1PI/Z) gene, results from defective secretion of the inhibitor from the liver. The A1PI/Z gene exhibits two point mutations which specify amino acid substitutions, Val-213 to Ala and Glu-342 to Lys. The functional importance of these substitutions in A1PI deficiency was investigated by studying the secretion of A1PI synthesized in COS cells transfected with A1PI genes altered by site-directed mutagenesis. This model system correctly duplicates the secretion defect seen in individuals homozygous for the A1PI/Z allele and shows that the substitution of Lys for Glu-342 alone causes defective secretion of A1PI. The substitution of Lys for Glu-342 eliminates the possibility for a salt bridge between residues 342 and 290, which may decrease the conformational stability of the molecule and thus account for the secretion defect. However, when we removed the potential to form a salt bridge from the wild-type inhibitor by changing Lys-290 to Glu (A1PI/SB-290Glu), secretion was not reduced to the 19% of normal level seen for A1PI/Z-342Lys; in fact, 75% of normal secretion was observed. When the potential for salt bridge formation was returned to A1PI/Z-342Lys by changing Lys-290 to Glu, only 46% of normal secretion was seen. These data indicate that the amino acid substitution at position 342, rather than the potential to form the 290-342 salt bridge, is the critical alteration leading to the defect in A1PI secretion.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sara Pintar ◽  
Jure Borišek ◽  
Aleksandra Usenik ◽  
Andrej Perdih ◽  
Dušan Turk

AbstractTo achieve productive binding, enzymes and substrates must align their geometries to complement each other along an entire substrate binding site, which may require enzyme flexibility. In pursuit of novel drug targets for the human pathogen S. aureus, we studied peptidoglycan N-acetylglucosaminidases, whose structures are composed of two domains forming a V-shaped active site cleft. Combined insights from crystal structures supported by site-directed mutagenesis, modeling, and molecular dynamics enabled us to elucidate the substrate binding mechanism of SagB and AtlA-gl. This mechanism requires domain sliding from the open form observed in their crystal structures, leading to polysaccharide substrate binding in the closed form, which can enzymatically process the bound substrate. We suggest that these two hydrolases must exhibit unusual extents of flexibility to cleave the rigid structure of a bacterial cell wall.


1997 ◽  
Vol 326 (1) ◽  
pp. 221-225 ◽  
Author(s):  
Shinji TOGASHI ◽  
Kazunaga TAKAZAWA ◽  
Toyoshi ENDO ◽  
Christophe ERNEUX ◽  
Toshimasa ONAYA

A series of key amino acids involved in Ins(1,4,5)P3 (InsP3) binding and catalytic activity of rat brain InsP3 3-kinase has been identified. The catalytic domain is at the C-terminal end and restricted to a maximum of 275 amino acids [Takazawa and Erneux (1991) Biochem. J. 280, 125–129]. In this study, newly prepared 5′-deletion and site-directed mutants have been compared both for InsP3 binding and InsP3 3-kinase activity. When the protein was expressed from L259 to R459, the activity was lost but InsP3 binding was conserved. Another deletion mutant that had lost only four amino acids after L259 had lost InsP3 binding, and this finding suggests that these residues (i.e. L259DCK262) are involved in InsP3 binding. To further support the data, we have produced two mutants by site-directed mutagenesis on residues C261 and K262. The two new enzymes were designated M4 (C261S) and M5 (K262A). M4 showed similar Vmax and Km values for InsP3 and ATP to wild-type enzyme. In contrast, M5 was totally inactive but had kept the ability to bind to calmodulin–Sepharose. C-terminal deletion mutants that had lost five, seven or nine amino acids showed a large decrease in InsP3 binding and InsP3 3-kinase activity. One mutant that had lost five amino acids (M2) was purified to apparent homogeneity: Km values for both substrates appeared unchanged but Vmax was decreased approx. 40-fold compared with the wild-type enzyme. The results indicate that (1) a positively charged amino acid residue K262 is essential for InsP3 binding and (2) amino acids at the C-terminal end of the protein are necessary to act as a catalyst in the InsP3 3-kinase reaction.


2001 ◽  
Vol 47 (12) ◽  
pp. 1088-1094 ◽  
Author(s):  
Yew-Loom Chen ◽  
Tsung-Yin Tang ◽  
Kuo-Joan Cheng

The catalytic domain of a xylanase from the anaerobic fungus Neocallimastix patriciarum was made more alkalophilic through directed evolution using error-prone PCR. Transformants expressing the alkalophilic variant xylanases produced larger clear zones when overlaid with high pH, xylan-containing agar. Eight amino acid substitutions were identified in six selected mutant xylanases. Whereas the wild-type xylanase exhibited no activity at pH 8.5, the relative and specific activities of the six mutants were higher at pH 8.5 than at pH 6.0. Seven of the eight amino acid substitutions were assembled in one enzyme (xyn-CDBFV) by site-directed mutagenesis. Some or all of the seven mutations exerted positive and possibly synergistic effects on the alkalophilicity of the enzyme. The resulting composite mutant xylanase retained a greater proportion of its activity than did the wild type at pH above 7.0, maintaining 25% of its activity at pH 9.0, and its retention of activity at acid pH was no lower than that of the wild type. The composite xylanase (xyn-CDBFV) had a relatively high specific activity of 10 128 µmol glucose·min–1·(mg protein)–1 at pH 6.0. It was more thermostable at 60°C and alkaline tolerant at pH 10.0 than the wild-type xylanase. These properties suggest that the composite mutant xylanase is a promising and suitable candidate for paper pulp bio-bleaching.Key words: xylanase, Neocallimastix patriciarum, alkalophilicity, random mutagenesis, directed evolution.


2012 ◽  
Vol 81 (1) ◽  
pp. 278-284 ◽  
Author(s):  
Anita Verma ◽  
Beth McNichol ◽  
Rocío I. Domínguez-Castillo ◽  
Juan C. Amador-Molina ◽  
Juan L. Arciniega ◽  
...  

Long-term stability is a desired characteristic of vaccines, especially anthrax vaccines, which must be stockpiled for large-scale use in an emergency situation; however, spontaneous deamidation of purified vaccine antigens has the potential to adversely affect vaccine immunogenicity over time. In order to explore whether spontaneous deamidation of recombinant protective antigen (rPA)—the major component of new-generation anthrax vaccines—affects vaccine immunogenicity, we created a “genetically deamidated” form of rPA using site-directed mutagenesis to replace six deamidation-prone asparagine residues, at positions 408, 466, 537, 601, 713, and 719, with either aspartate, glutamine, or alanine residues. We found that the structure of the six-Asp mutant rPA was not significantly altered relative to that of the wild-type protein as assessed by circular dichroism (CD) spectroscopy and biological activity. In contrast, immunogenicity of aluminum-adjuvanted six-Asp mutant rPA, as measured by induction of toxin-neutralizing antibodies, was significantly lower than that of the corresponding wild-type rPA vaccine formulation. The six-Gln and six-Ala mutants also exhibited lower immunogenicity than the wild type. While the wild-type rPA vaccine formulation exhibited a high level of immunogenicity initially, its immunogenicity declined significantly upon storage at 25°C for 4 weeks. In contrast, the immunogenicity of the six-Asp mutant rPA vaccine formulation was low initially but did not change significantly upon storage. Taken together, results from this study suggest that spontaneous deamidation of asparagine residues predicted to occur during storage of rPA vaccines would adversely affect vaccine immunogenicity and therefore the storage life of vaccines.


1989 ◽  
Vol 9 (4) ◽  
pp. 1406-1414 ◽  
Author(s):  
A A McCracken ◽  
K B Kruse ◽  
J L Brown

Human alpha-1-proteinase inhibitor (A1PI) deficiency, associated with the Z-variant A1PI (A1PI/Z) gene, results from defective secretion of the inhibitor from the liver. The A1PI/Z gene exhibits two point mutations which specify amino acid substitutions, Val-213 to Ala and Glu-342 to Lys. The functional importance of these substitutions in A1PI deficiency was investigated by studying the secretion of A1PI synthesized in COS cells transfected with A1PI genes altered by site-directed mutagenesis. This model system correctly duplicates the secretion defect seen in individuals homozygous for the A1PI/Z allele and shows that the substitution of Lys for Glu-342 alone causes defective secretion of A1PI. The substitution of Lys for Glu-342 eliminates the possibility for a salt bridge between residues 342 and 290, which may decrease the conformational stability of the molecule and thus account for the secretion defect. However, when we removed the potential to form a salt bridge from the wild-type inhibitor by changing Lys-290 to Glu (A1PI/SB-290Glu), secretion was not reduced to the 19% of normal level seen for A1PI/Z-342Lys; in fact, 75% of normal secretion was observed. When the potential for salt bridge formation was returned to A1PI/Z-342Lys by changing Lys-290 to Glu, only 46% of normal secretion was seen. These data indicate that the amino acid substitution at position 342, rather than the potential to form the 290-342 salt bridge, is the critical alteration leading to the defect in A1PI secretion.


1999 ◽  
Vol 337 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Lulu A. BRIX ◽  
Ronald G. DUGGLEBY ◽  
Andrea GAEDIGK ◽  
Michael E. McMANUS

Human aryl sulphotransferase (HAST) 1, HAST3, HAST4 and HAST4v share greater than 90% sequence identity, but vary markedly in their ability to catalyse the sulphonation of dopamine and p-nitrophenol. In order to investigate the amino acid(s) involved in determining differing substrate specificities of HASTs, a range of chimaeric HAST proteins were constructed. Analysis of chimaeric substrate specificities showed that enzyme affinities are mainly determined within the N-terminal end of each HAST protein, which includes two regions of high sequence divergence, termed Regions A (amino acids 44–107) and B (amino acids 132–164). To investigate the substrate-binding sites of HASTs further, site-directed mutagenesis was performed on HAST1 to change 13 individual residues within these two regions to the HAST3 equivalent. A single amino acid change in HAST1 (A146E) was able to change the specificity for p-nitrophenol to that of HAST3. The substrate specificity of HAST1 towards dopamine could not be converted into that of HAST3 with a single amino acid change. However, compared with wild-type HAST1, a number of the mutations resulted in interference with substrate binding, as shown by elevated Ki values towards the co-substrate 3´-phosphoadenosine 5´-phosphosulphate, and in some cases loss of activity towards dopamine. These findings suggest that a co-ordinated change of multiple amino acids in HAST proteins is needed to alter the substrate specificities of these enzymes towards dopamine, whereas a single amino acid at position 146 determines p-nitrophenol affinity. A HAST1 mutant was constructed to express a protein with four amino acids deleted (P87–P90). These amino acids were hypothesized to correspond to a loop region in close proximity to the substrate-binding pocket. Interestingly, the protein showed substrate specificities more similar to wild-type HAST3 than HAST1 and indicates an important role of these amino acids in substrate binding.


Sign in / Sign up

Export Citation Format

Share Document