scholarly journals Unique Small Molecule Entry Inhibitors of Hemorrhagic Fever Arenaviruses

2008 ◽  
Vol 283 (27) ◽  
pp. 18734-18742 ◽  
Author(s):  
Andrew M. Lee ◽  
Jillian M. Rojek ◽  
Christina F. Spiropoulou ◽  
Anette T. Gundersen ◽  
Wei Jin ◽  
...  
2010 ◽  
Vol 286 (8) ◽  
pp. 6192-6200 ◽  
Author(s):  
Celestine J. Thomas ◽  
Hedi E. Casquilho-Gray ◽  
Joanne York ◽  
Dianne L. DeCamp ◽  
Dongcheng Dai ◽  
...  

2021 ◽  
pp. 116000
Author(s):  
Francesca Curreli ◽  
Shahad Ahmed ◽  
Sofia M. Benedict Victor ◽  
Ildar R. Iusupov ◽  
Evgeny A. Spiridonov ◽  
...  

2014 ◽  
Vol 24 (23) ◽  
pp. 5439-5445 ◽  
Author(s):  
Marina Tuyishime ◽  
Matt Danish ◽  
Amy Princiotto ◽  
Marie K. Mankowski ◽  
Rae Lawrence ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1581 ◽  
Author(s):  
Megan E. Meuser ◽  
Adel A. Rashad ◽  
Gabriel Ozorowski ◽  
Alexej Dick ◽  
Andrew B. Ward ◽  
...  

Small-molecule HIV-1 entry inhibitors are an extremely attractive therapeutic modality. We have previously demonstrated that the entry inhibitor class can be optimized by using computational means to identify and extend the chemotypes available. Here we demonstrate unique and differential effects of previously published antiviral compounds on the gross structure of the HIV-1 Env complex, with an azabicyclohexane scaffolded inhibitor having a positive effect on glycoprotein thermostability. We demonstrate that modification of the methyltriazole-azaindole headgroup of these entry inhibitors directly effects the potency of the compounds, and substitution of the methyltriazole with an amine-oxadiazole increases the affinity of the compound 1000-fold over parental by improving the on-rate kinetic parameter. These findings support the continuing exploration of compounds that shift the conformational equilibrium of HIV-1 Env as a novel strategy to improve future inhibitor and vaccine design efforts.


2016 ◽  
Vol 90 (15) ◽  
pp. 6799-6807 ◽  
Author(s):  
Sundaresh Shankar ◽  
Landon R. Whitby ◽  
Hedi E. Casquilho-Gray ◽  
Joanne York ◽  
Dale L. Boger ◽  
...  

ABSTRACTArenavirus species are responsible for severe life-threatening hemorrhagic fevers in western Africa and South America. Without effective antiviral therapies or vaccines, these viruses pose serious public health and biodefense concerns. Chemically distinct small-molecule inhibitors of arenavirus entry have recently been identified and shown to act on the arenavirus envelope glycoprotein (GPC) to prevent membrane fusion. In the tripartite GPC complex, pH-dependent membrane fusion is triggered through a poorly understood interaction between the stable signal peptide (SSP) and the transmembrane fusion subunit GP2, and our genetic studies have suggested that these small-molecule inhibitors act at this interface to antagonize fusion activation. Here, we have designed and synthesized photoaffinity derivatives of the 4-acyl-1,6-dialkylpiperazin-2-one class of fusion inhibitors and demonstrate specific labeling of both the SSP and GP2 subunits in a native-like Lassa virus (LASV) GPC trimer expressed in insect cells. Photoaddition is competed by the parental inhibitor and other chemically distinct compounds active against LASV, but not those specific to New World arenaviruses. These studies provide direct physical evidence that these inhibitors bind at the SSP-GP2 interface. We also find that GPC containing the uncleaved GP1-GP2 precursor is not susceptible to photo-cross-linking, suggesting that proteolytic maturation is accompanied by conformational changes at this site. Detailed mapping of residues modified by the photoaffinity adducts may provide insight to guide the further development of these promising lead compounds as potential therapeutic agents to treat Lassa hemorrhagic fever.IMPORTANCEHemorrhagic fever arenaviruses cause lethal infections in humans and, in the absence of licensed vaccines or specific antiviral therapies, are recognized to pose significant threats to public health and biodefense. Lead small-molecule inhibitors that target the arenavirus envelope glycoprotein (GPC) have recently been identified and shown to block GPC-mediated fusion of the viral and cellular endosomal membranes, thereby preventing virus entry into the host cell. Genetic studies suggest that these inhibitors act through a unique pH-sensing intersubunit interface in GPC, but atomic-level structural information is unavailable. In this report, we utilize novel photoreactive fusion inhibitors and photoaffinity labeling to obtain direct physical evidence for inhibitor binding at this critical interface in Lassa virus GPC. Future identification of modified residues at the inhibitor-binding site will help elucidate the molecular basis for fusion activation and its inhibition and guide the development of effective therapies to treat arenaviral hemorrhagic fevers.


2021 ◽  
Vol 17 (2) ◽  
pp. e1009312
Author(s):  
Adam Schafer ◽  
Rui Xiong ◽  
Laura Cooper ◽  
Raghad Nowar ◽  
Hyun Lee ◽  
...  

Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.


2018 ◽  
Author(s):  
Peilin Wang ◽  
Yang Liu ◽  
Guangshun Zhang ◽  
Shaobo Wang ◽  
Jiao Guo ◽  
...  

ABSTRACTLassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. At present, there are no Food and Drug Administration (FDA)-approved drugs or vaccines specific for LASV. Herein, high-throughput screening of an FDA-approved drug library was performed against LASV entry using a pseudo-type virus enveloping LASV glycoproteins. Two hit drugs, lacidipine and phenothrin, were identified as LASV entry inhibitors in the micromolar range. A mechanistic study revealed that both drugs inhibited LASV entry by blocking low-pH-induced membrane fusion. Moreover, lacidipine irreversibly bound to the LASV glycoprotein complex (GPC), resulting in virucidal activity. Adaptive mutant analyses demonstrated that replacement of T40, located in the ectodomain of the stable-signal peptide (SSP), with lysine (K) conferred LASV resistance to lacidipine without apparent loss of the viral growth profile. Furthermore, lacidipine showed antiviral activity and specificity against both LASV and the Guanarito virus (GTOV), which is also a category A new world arenavirus. Drug-resistant variants indicate that the V36M in ectodomain of SSP mutant and V436A in the transmembrane domain of GP2 mutant conferred GTOV resistance to lacidipine, suggesting that lacidipine might act via a novel mechanism other than calcium inhibition. This study shows that both lacidipine and phenothrin are candidates for LASV therapy, and the membrane-proximal external region of the GPC might provide an entry-targeted platform for inhibitors.


2016 ◽  
Vol 24 (22) ◽  
pp. 5988-6003 ◽  
Author(s):  
Francesca Curreli ◽  
Dmitry S. Belov ◽  
Ranjith R. Ramesh ◽  
Naisargi Patel ◽  
Andrea Altieri ◽  
...  

2013 ◽  
Vol 98 (3) ◽  
pp. 432-440 ◽  
Author(s):  
Jinhong Chang ◽  
Travis K. Warren ◽  
Xuesen Zhao ◽  
Tina Gill ◽  
Fang Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document