scholarly journals Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies

2020 ◽  
Vol 295 (19) ◽  
pp. 6413-6424 ◽  
Author(s):  
Kuo Liu ◽  
Hengwei Jin ◽  
Bin Zhou

Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase–mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate–related biological phenomena in the life sciences.

2016 ◽  
Vol 113 (14) ◽  
pp. 3820-3825 ◽  
Author(s):  
Jianjian Zhu ◽  
Kin Ming Kwan ◽  
Susan Mackem

The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial–mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers.


2019 ◽  
Author(s):  
Nadine Suffee ◽  
Thomas Moore-Morris ◽  
Nathalie Mougenot ◽  
Gilles Dilanian ◽  
Myriam Berthet ◽  
...  

AbstractEpicardium, the mesothelium covering the heart, is composed of multipotent cells and is reactivated following myocardial injury in adults. Herein, we provide evidence for activation of atrial epicardium in aged patients with diseased atria and in murine models of atrial remodeling. Epicardial activation contributed to fibro-fatty infiltration of sub-epicardium that contained a number of cells co-expressing markers of epicardial progenitors and fibroblasts. Indeed, using genetic lineage tracing of adult epicardium, we demonstrate the epicardial origin of fibroblasts within fibro-fatty infiltrates. A subpopulation of adult epicardial-derived cells (aEPDCs) expressing PDGFRα, niched in the sub-epicardium, were isolated and differentiated into myofibroblast in the presence of angiotensin-II. Furthermore, single cell RNA-seq analysis identified several clusters of aEPDCs and revealed transition from adipogenic to fibrogenic cells. In conclusion, a subset of aEPDCs, pre-programmed towards a specific cell fate, contributes to fibro-fatty infiltration of sub-epicardium of diseased atria.


Development ◽  
2020 ◽  
Vol 147 (18) ◽  
pp. dev188839
Author(s):  
Sergi Sayols ◽  
Jakub Klassek ◽  
Clara Werner ◽  
Stefanie Möckel ◽  
Sandra Ritz ◽  
...  

ABSTRACTThe identity of embryonic gastric epithelial progenitors is unknown. We used single-cell RNA-sequencing, genetic lineage tracing and organoid assays to assess whether Axin2- and Lgr5-expressing cells are gastric progenitors in the developing mouse stomach. We show that Axin2+ cells represent a transient population of embryonic epithelial cells in the forestomach. Lgr5+ cells generate both glandular corpus and squamous forestomach organoids ex vivo. Only Lgr5+ progenitors give rise to zymogenic cells in culture. Modulating the activity of the WNT, BMP and Notch pathways in vivo and ex vivo, we found that WNTs are essential for the maintenance of Lgr5+ epithelial cells. Notch prevents differentiation of the embryonic epithelial cells along all secretory lineages and hence ensures their maintenance. Whereas WNTs promote differentiation of the embryonic progenitors along the zymogenic cell lineage, BMPs enhance their differentiation along the parietal lineage. In contrast, WNTs and BMPs are required to suppress differentiation of embryonic gastric epithelium along the pit cell lineage. Thus, coordinated action of the WNT, BMP and Notch pathways controls cell fate determination in the embryonic gastric epithelium.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjuan Pu ◽  
Bin Zhou

AbstractThe liver has remarkable capability to regenerate, employing mechanism to ensure the stable liver-to-bodyweight ratio for body homeostasis. The source of this regenerative capacity has received great attention over the past decade yet still remained controversial currently. Deciphering the sources for hepatocytes provides the basis for understanding tissue regeneration and repair, and also illustrates new potential therapeutic targets for treating liver diseases. In this review, we describe recent advances in genetic lineage tracing studies over liver stem cells, hepatocyte proliferation, and cell lineage conversions or cellular reprogramming. This review will also evaluate the technical strengths and limitations of methods used for studies on hepatocyte generation and cell fate plasticity in liver homeostasis, repair and regeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Ze Tian ◽  
Sheng Xing ◽  
Jing-Yi Feng ◽  
Shu-Hua Yang ◽  
Yan-Fu Ding ◽  
...  

AbstractIn the adult pancreas, the presence of progenitor or stem cells and their potential involvement in homeostasis and regeneration remains unclear. Here, we identify that SET domain-containing protein 4 (SETD4), a histone lysine methyltransferase, is expressed in a small cell population in the adult mouse pancreas. Genetic lineage tracing shows that during pancreatic development, descendants of SETD4+ cells make up over 70% of pancreatic cells and then contribute to each pancreatic lineage during pancreatic homeostasis. SETD4+ cells generate newborn acinar cells in response to cerulein-induced pancreatitis in acinar compartments. Ablation of SETD4+ cells compromises regeneration of acinar cells, in contrast to controls. Our findings provide a new cellular narrative for pancreatic development, homeostasis and response to injury via a small SETD4+ cell population. Potential applications may act to preserve pancreatic function in case of pancreatic disease and/or damage.


Author(s):  
Wanbo Tang ◽  
Jian He ◽  
Tao Huang ◽  
Zhijie Bai ◽  
Chaojie Wang ◽  
...  

In the aorta-gonad-mesonephros (AGM) region of mouse embryos, pre-hematopoietic stem cells (pre-HSCs) are generated from rare and specialized hemogenic endothelial cells (HECs) via endothelial-to-hematopoietic transition, followed by maturation into bona fide hematopoietic stem cells (HSCs). As HECs also generate a lot of hematopoietic progenitors not fated to HSCs, powerful tools that are pre-HSC/HSC-specific become urgently critical. Here, using the gene knockin strategy, we firstly developed an Hlf-tdTomato reporter mouse model and detected Hlf-tdTomato expression exclusively in the hematopoietic cells including part of the immunophenotypic CD45– and CD45+ pre-HSCs in the embryonic day (E) 10.5 AGM region. By in vitro co-culture together with long-term transplantation assay stringent for HSC precursor identification, we further revealed that unlike the CD45– counterpart in which both Hlf-tdTomato-positive and negative sub-populations harbored HSC competence, the CD45+ E10.5 pre-HSCs existed exclusively in Hlf-tdTomato-positive cells. The result indicates that the cells should gain the expression of Hlf prior to or together with CD45 to give rise to functional HSCs. Furthermore, we constructed a novel Hlf-CreER mouse model and performed time-restricted genetic lineage tracing by a single dose induction at E9.5. We observed the labeling in E11.5 AGM precursors and their contribution to the immunophenotypic HSCs in fetal liver (FL). Importantly, these Hlf-labeled early cells contributed to and retained the size of the HSC pool in the bone marrow (BM), which continuously differentiated to maintain a balanced and long-term multi-lineage hematopoiesis in the adult. Therefore, we provided another valuable mouse model to specifically trace the fate of emerging HSCs during development.


2020 ◽  
Author(s):  
Caitlin C. Winkler ◽  
Luuli N. Tran ◽  
Ellyn P. Milan ◽  
Fernando García-Moreno ◽  
Santos J. Franco

In the developing nervous system, progenitors first generate neurons before making astrocytes and oligodendrocytes. We previously showed that increased Sonic hedgehog (Shh) signaling in dorsal forebrain progenitors is important for their production of oligodendrocytes as neurogenesis winds down. Here, we analyzed single-cell RNA sequencing datasets to better understand how Shh controls this neuron-to-oligodendrocyte switch in the neocortex. We first identified Shh-responding progenitors using a dataset in which Shh was overexpressed in the mouse dorsal forebrain. Pseudotime trajectory inferences revealed a subpopulation committed to the oligodendrocyte precursor cell (OPC) lineage. Genes upregulated along this lineage defined a pre-OPC state, as cells transitioned from progenitors to OPCs. Using several datasets from wild-type mouse and human embryos at different ages, we confirmed a pre-OPC state preceding OPC emergence during normal development. Finally, we show that pre-OPCs are enriched for a gene regulatory network involving the transcription factor Ascl1. Genetic lineage-tracing demonstrated Ascl1+ dorsal progenitors primarily make oligodendrocytes. We propose a model in which Shh shifts the balance between opposing transcriptional networks toward an Ascl1 lineage, thereby facilitating the switch between neurogenesis and oligodendrogenesis.


2021 ◽  
Author(s):  
Xu Fan ◽  
Pei Lu ◽  
Xianghua Cui ◽  
Peng Wu ◽  
Weiran Lin ◽  
...  

Abstract Kupffer cells (KCs) originate from yolk sac progenitors before birth, but the origin of repopulating KCs in adult remains unclear. In current study, we firstly traced the fate of preexisting KCs and that of monocytic cells with tissue-resident macrophage-specific and monocytic cell-specific fate mapping mouse models, respectively, and found no evidences that repopulating KCs originate from preexisting KCs or MOs. Secondly, we performed genetic lineage tracing to determine the type of progenitor cells involved in response to KC depletion in mice, and found that in response to KC depletion, hematopoietic stem cells (HSCs) proliferated in the bone marrow, mobilized into the blood, adoptively transferred into the liver and differentiated into KCs. Finally, we traced the fate of HSCs in a HSC-specific fate-mapping mouse model, in context of chronic liver inflammation induced by repeated carbon tetrachloride treatment, and confirmed that repopulating KCs originated directly from HSCs. Taken together, these findings provided in vivo fate-mapping evidences that repopulating KCs originate directly from hematopoietic stem cells, which present a completely novel understanding of the cellular origin of repopulating Kupffer Cells and shedding light on the divergent roles of KCs in liver homeostasis and diseases.


Sign in / Sign up

Export Citation Format

Share Document