scholarly journals Ligand bias in receptor tyrosine kinase signaling

2020 ◽  
Vol 295 (52) ◽  
pp. 18494-18507
Author(s):  
Kelly Karl ◽  
Michael D. Paul ◽  
Elena B. Pasquale ◽  
Kalina Hristova

Ligand bias is the ability of ligands to differentially activate certain receptor signaling responses compared with others. It reflects differences in the responses of a receptor to specific ligands and has implications for the development of highly specific therapeutics. Whereas ligand bias has been studied primarily for G protein–coupled receptors (GPCRs), there are also reports of ligand bias for receptor tyrosine kinases (RTKs). However, the understanding of RTK ligand bias is lagging behind the knowledge of GPCR ligand bias. In this review, we highlight how protocols that were developed to study GPCR signaling can be used to identify and quantify RTK ligand bias. We also introduce an operational model that can provide insights into the biophysical basis of RTK activation and ligand bias. Finally, we discuss possible mechanisms underpinning RTK ligand bias. Thus, this review serves as a primer for researchers interested in investigating ligand bias in RTK signaling.

2019 ◽  
Vol 30 (3) ◽  
pp. 346-356 ◽  
Author(s):  
Xi Wen ◽  
Xuehua Xu ◽  
Wenxiang Sun ◽  
Keqiang Chen ◽  
Miao Pan ◽  
...  

A dogma of innate immunity is that neutrophils use G-protein–coupled receptors (GPCRs) for chemoattractant to chase bacteria through chemotaxis and then use phagocytic receptors coupled with tyrosine kinases to destroy opsonized bacteria via phagocytosis. Our current work showed that G-protein–coupled formyl peptide receptors (FPRs) directly mediate neutrophil phagocytosis. Mouse neutrophils lacking formyl peptide receptors (Fpr1/2–/–) are defective in the phagocytosis of Escherichia coli and the chemoattractant N-formyl-Met-Leu-Phe (fMLP)-coated beads. fMLP immobilized onto the surface of a bead interacts with FPRs, which trigger a Ca2+response and induce actin polymerization to form a phagocytic cup for engulfment of the bead. This chemoattractant GPCR/Gi signaling works independently of phagocytic receptor/tyrosine kinase signaling to promote phagocytosis. Thus, in addition to phagocytic receptor-mediated phagocytosis, neutrophils also utilize the chemoattractant GPCR/Gi signaling to mediate phagocytosis to fight against invading bacteria.


Biochemistry ◽  
2005 ◽  
Vol 44 (44) ◽  
pp. 14595-14605 ◽  
Author(s):  
Charlotte K. Billington ◽  
Kok C. Kong ◽  
Raja Bhattacharyya ◽  
Philip B. Wedegaertner ◽  
Reynold A. Panettieri, ◽  
...  

2006 ◽  
Vol 68 (1) ◽  
pp. 491-505 ◽  
Author(s):  
Edward J. Weinman ◽  
Randy A. Hall ◽  
Peter A. Friedman ◽  
Lee-Yuan Liu-Chen ◽  
Shirish Shenolikar

Sign in / Sign up

Export Citation Format

Share Document