rtk signaling
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 38)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 11 ◽  
Author(s):  
Soudeh Ghafouri-Fard ◽  
Tayyebeh Khoshbakht ◽  
Mohammad Taheri ◽  
Seyedpouzhia Shojaei

Sprouty RTK signaling antagonist 4-intronic transcript 1 (SPRY4-IT1) is a long non-coding RNA (lncRNA) encoded by a gene located on 5q31.3. This lncRNA has a possible role in the regulation of cell growth, proliferation, and apoptosis. Moreover, since SPRY4-IT1 controls levels of lipin 2, it is also involved in the biosynthesis of lipids. During the process of biogenesis, SPRY4-IT1 is produced as a primary transcript which is then cleaved to generate a mature transcript which is localized in the cytoplasm. SPRY4-IT1 has oncogenic roles in diverse tissues. A possible route of participation of SPRY4-IT1 in the carcinogenesis is through sequestering miRNAs such as miR-101-3p, miR‐6882‐3p and miR-22-3p. The sponging effect of SPRY4-IT1 on miR-101 has been verified in colorectal cancer, osteosarcoma, cervical cancer, bladder cancer, gastric cancer and cholangiocarcinoma. SPRY4-IT1 has functional interactions with HIF-1α, NF-κB/p65, AMPK, ZEB1, MAPK and PI3K/Akt signaling. We explain the role of SPRY4-IT1 in the carcinogenesis according to evidence obtained from cell lines, xenograft models and clinical studies.


2021 ◽  
Author(s):  
Lei Duan ◽  
Sarah J Calhoun ◽  
Ricardo E Perez ◽  
Virgilia Macias ◽  
Fatima Mir ◽  
...  

Abstract Background Prolylcarboxypeptidase (PRCP) is a lysosomal serine protease that cleaves peptide substrates when the penultimate amino acid is proline. Previous studies have linked PRCP to blood-pressure and appetite control through its ability to cleave peptide substrates such as angiotensin II and a-MSH. A potential role for PRCP in cancer has to date not been widely appreciated. Endocrine therapy resistance in breast cancer is an enduring clinical problem mediated in part by aberrant receptor tyrosine kinase (RTK) signaling. We previously found PRCP overexpression promoted tamoxifen (TAM) resistance in estrogen receptor-positive (ER+) breast cancer cells. Currently we tested the potential association between PRCP with breast cancer patient outcome and RTK signaling, and tumor responsiveness to endocrine therapy. Methods We analyzed PRCP protein expression by IHC staining of ER+ breast cancer samples and PRCP gene expression in clinical databases and used Kaplan-Meier survival curves to determine the significance of PRCP expression correlation with recurrence free survival and overall survival. We analyzed PRCP-regulated IGF1R/HER3 signaling using immunoblotting in the ER+ MCF7 cell line. We analyzed the therapeutic effect of a PRCP specific inhibitor (PRCPi) and/or endoxifen on tumor growth of ER+ PDX tumors and MCF7 tumors in immunocompromised mice. ResultsWe found high PRCP protein levels in tumors associates with worse outcome and earlier recurrence in breast cancer patients, including patients treated with TAM. Analyses of clinical databases showed that PRCP expression correlates with IGF1 and NRG1 expression and their target genes and earlier recurrence in endocrine-treated ER+/HER2- breast cancer patients. Overexpression of PRCP increased IGF1R/HER3 signaling. PRCPi blocked IGF1R/HER3 signaling and enhanced the response of ER+ breast cancer tumors in mice to endoxifen, the active metabolite of TAM. ConclusionsPRCP is an adverse prognostic marker in breast cancer and a potential target to improve endocrine therapy in ER+ breast cancers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ke Gong ◽  
Gao Guo ◽  
Nicole A. Beckley ◽  
Xiaoyao Yang ◽  
Yue Zhang ◽  
...  

AbstractInhibition of RTK pathways in cancer triggers an adaptive response that promotes therapeutic resistance. Because the adaptive response is multifaceted, the optimal approach to blunting it remains undetermined. TNF upregulation is a biologically significant response to EGFR inhibition in NSCLC. Here, we compared a specific TNF inhibitor (etanercept) to thalidomide and prednisone, two drugs that block TNF and also other inflammatory pathways. Prednisone is significantly more effective in suppressing EGFR inhibition-induced inflammatory signals. Remarkably, prednisone induces a shutdown of bypass RTK signaling and inhibits key resistance signals such as STAT3, YAP and TNF-NF-κB. Combined with EGFR inhibition, prednisone is significantly superior to etanercept or thalidomide in durably suppressing tumor growth in multiple mouse models, indicating that a broad suppression of adaptive signals is more effective than blocking a single component. We identify prednisone as a drug that can effectively inhibit adaptive resistance with acceptable toxicity in NSCLC and other cancers.


Development ◽  
2021 ◽  
Vol 148 (23) ◽  
Author(s):  
Patricia Mendoza-Garcia ◽  
Swaraj Basu ◽  
Sanjay Kumar Sukumar ◽  
Badrul Arefin ◽  
Georg Wolfstetter ◽  
...  

ABSTRACT Development of the Drosophila visceral muscle depends on Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) signaling, which specifies founder cells (FCs) in the circular visceral mesoderm (VM). Although Alk activation by its ligand Jelly Belly (Jeb) is well characterized, few target molecules have been identified. Here, we used targeted DamID (TaDa) to identify Alk targets in embryos overexpressing Jeb versus embryos with abrogated Alk activity, revealing differentially expressed genes, including the Snail/Scratch family transcription factor Kahuli (Kah). We confirmed Kah mRNA and protein expression in the VM, and identified midgut constriction defects in Kah mutants similar to those of pointed (pnt). ChIP and RNA-Seq data analysis defined a Kah target-binding site similar to that of Snail, and identified a set of common target genes putatively regulated by Kah and Pnt during midgut constriction. Taken together, we report a rich dataset of Alk-responsive loci in the embryonic VM and functionally characterize the role of Kah in the regulation of embryonic midgut morphogenesis.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Davy Deng ◽  
Frank Dubois ◽  
Alexander Crane ◽  
Ashot Harutyunyan ◽  
Rameen Beroukhim ◽  
...  

Abstract BACKGROUND Pediatric High-Grade Gliomas (pHGGs) show recurrent high-level amplifications around the oncogenes MET, MYCN and EGFR. However what drives expression of the oncogenes from these amplicons remains unclear. We aim to discover enhancers on these amplicons that are responsible for oncogene expressions and the core regulatory transcription factors (TFs) they bind. METHOD Using RNA-seq from 12 pHGG cell lines, we identified groups of high and low-expressing pHGG lines for MET, MYCN and EGFR. We then compared the H3K27Ac ChIP-seq between the two groups using diffbind. This allowed us to identify statistically significant peaks that are differentially activated in the oncogene-high v.s. oncogene-low expressing groups. Additionally, we overlapped the positions of these candidate oncogene enhancers with the regions that are recurrently incorporated into high-level amplicons based on published whole genome sequencing data. Using a previously defined set of core regulatory TFs we determined which TF binds the amplified oncogene enhancers and could be driving oncogenic expressions of MET, MYCN and EGFR in pHGGs. RESULTS We identify 3 cell lines for both the high- and low-expressing groups for each oncogene. Cell lines with high expression of the oncogene showed distinct enhancers with significant enrichment in H3K27Ac compared to the cell lines with low expression for each oncogene. Of all enhancers with enrichment high oncogene expression groups those with binding sites for known pHGG core regulatory circuit TF were preferentially incorporated into the high-level amplicons of the oncogene. We also identified core TFs that bind enhancers for MYCN, EGFR and MET as well as core TFs that are unique to a single oncogene. CONCLUSION We identified candidate core transcription factor that drives expression of multiple oncogenes in pHGG. These could serve as a potential novel therapeutic target for pHGGs with addiction to MYCN or RTK signaling.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2632
Author(s):  
Alexei J. Stuckel ◽  
Shuai Zeng ◽  
Zhen Lyu ◽  
Wei Zhang ◽  
Xu Zhang ◽  
...  

Conventional wisdom is that Sprouty2 (SPRY2), a suppressor of Receptor Tyrosine Kinase (RTK) signaling, functions as a tumor suppressor and is downregulated in many solid tumors. We reported, for the first time, that increased expression of SPRY2 augments cancer phenotype and Epithelial-Mesenchymal-Transition (EMT) in colorectal cancer (CRC). In this report, we assessed epigenetic DNA modifications that regulate SPRY2 expression in CRC. A total of 4 loci within SPRY2 were evaluated for 5mC using Combined Bisulfite Restriction Analysis (COBRA). Previously sequenced 5hmC nano-hmC seal data within SPRY2 promoter and gene body were evaluated in CRC. Combined bioinformatics analyses of SPRY2 CRC transcripts by RNA-seq/microarray and 450K methyl-array data archived in The Cancer Genome Atlas (TCGA) and GEO database were performed. SPRY2 protein in CRC tumors and cells was measured by Western blotting. Increased SPRY2 mRNA was observed across several CRC datasets and increased protein expression was observed among CRC patient samples. For the first time, SPRY2 hypomethylation was identified in adenocarcinomas in the promoter and gene body. We also revealed, for the first time, increases of 5hmC deposition in the promoter region of SPRY2 in CRC. SPRY2 promoter hypomethylation and increased 5hmC may play an influential role in upregulating SPRY2 in CRC.


2021 ◽  
Vol 22 (12) ◽  
pp. 6342
Author(s):  
Azzurra Margiotta

Receptor tyrosine kinases (RTKs) are membrane receptors that regulate many fundamental cellular processes. A tight regulation of RTK signaling is fundamental for development and survival, and an altered signaling by RTKs can cause cancer. RTKs are localized at the plasma membrane (PM) and the major regulatory mechanism of signaling of RTKs is their endocytosis and degradation. In fact, RTKs at the cell surface bind ligands with their extracellular domain, become active, and are rapidly internalized where the temporal extent of signaling, attenuation, and downregulation are modulated. However, other mechanisms of signal attenuation and termination are known. Indeed, inhibition of RTKs’ activity may occur through the modulation of the phosphorylation state of RTKs and the interaction with specific proteins, whereas antagonist ligands can inhibit the biological responses mediated by the receptor. Another mechanism concerns the expression of endogenous inactive receptor variants that are deficient in RTK activity and take part to inactive heterodimers or hetero-oligomers. The downregulation of RTK signals is fundamental for several cellular functions and the homeostasis of the cell. Here, we will review the mechanisms of signal attenuation and termination of RTKs, focusing on FGFRs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Osugi ◽  
Natsuko Miyasaka ◽  
Akira Shiraishi ◽  
Shin Matsubara ◽  
Honoo Satake

AbstractCionin is a homolog of vertebrate cholecystokinin/gastrin that has been identified in the ascidian Ciona intestinalis type A. The phylogenetic position of ascidians as the closest living relatives of vertebrates suggests that cionin can provide clues to the evolution of endocrine/neuroendocrine systems throughout chordates. Here, we show the biological role of cionin in the regulation of ovulation. In situ hybridization demonstrated that the mRNA of the cionin receptor, Cior2, was expressed specifically in the inner follicular cells of pre-ovulatory follicles in the Ciona ovary. Cionin was found to significantly stimulate ovulation after 24-h incubation. Transcriptome and subsequent Real-time PCR analyses confirmed that the expression levels of receptor tyrosine kinase (RTK) signaling genes and a matrix metalloproteinase (MMP) gene were significantly elevated in the cionin-treated follicles. Of particular interest is that an RTK inhibitor and MMP inhibitor markedly suppressed the stimulatory effect of cionin on ovulation. Furthermore, inhibition of RTK signaling reduced the MMP gene expression in the cionin-treated follicles. These results provide evidence that cionin induces ovulation by stimulating MMP gene expression via the RTK signaling pathway. This is the first report on the endogenous roles of cionin and the induction of ovulation by cholecystokinin/gastrin family peptides in an organism.


2021 ◽  
Author(s):  
Shahan Mamoor

Breast cancer affects women at relatively high frequency (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding sprouty RTK signaling antagonist 1, SPRY1, when comparing primary tumors of the breast to the tissue of origin, the normal breast. SPRY1 mRNA was present at significantly lower quantities in tumors of the breast as compared to normal breast tissue. Analysis of human survival data revealed that expression of SPRY1 in primary tumors of the breast was correlated with overall survival in patients with basal and luminal A subtype cancer, but in a contrary manner, demonstrating a complex relationship between primary tumor expression of a differentially expressed gene and patient survival outcomes influenced by molecular subtype. SPRY1 may be of relevance to initiation, maintenance or progression of cancers of the female breast.


Sign in / Sign up

Export Citation Format

Share Document