heteroreceptor complexes
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 4)

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1902
Author(s):  
Dasiel O. Borroto-Escuela ◽  
Patrizia Ambrogini ◽  
Manuel Narvaez ◽  
Valentina Di Liberto ◽  
Sarah Beggiato ◽  
...  

The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor–receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biological principle of forming 5-HT and other heteroreceptor complexes in the brain also help understand the mechanism of action for especially the 5-HT hallucinogens, including putative positive effects of e.g., psilocybin and the indicated prosocial and anti-stress actions of MDMA (ecstasy). The GalR1-GalR2 heterodimer and the putative GalR1-GalR2-5-HT1 heteroreceptor complexes are targets for Galanin N-terminal fragment Gal (1–15), a major modulator of emotional networks in models of mental disease. GPCR-receptor tyrosine kinase (RTK) heteroreceptor complexes can operate through transactivation of FGFR1 via allosteric mechanisms and indirect interactions over GPCR intracellular pathways involving protein kinase Src which produces tyrosine phosphorylation of the RTK. The exciting discovery was made that several antidepressant drugs such as TCAs and SSRIs as well as the fast-acting antidepressant drug ketamine can directly bind to the TrkB receptor and provide a novel mechanism for their antidepressant actions. Understanding the role of astrocytes and their allosteric receptor–receptor interactions in modulating forebrain glutamate synapses with impact on dorsal raphe-forebrain serotonin neurons is also of high relevance for research on major depressive disorder.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dasiel O. Borroto-Escuela ◽  
Karolina Wydra ◽  
Ramon Fores-Pons ◽  
Lakshmi Vasudevan ◽  
Wilber Romero-Fernandez ◽  
...  

The widespread distribution of heteroreceptor complexes with allosteric receptor-receptor interactions in the CNS represents a novel integrative molecular mechanism in the plasma membrane of neurons and glial cells. It was proposed that they form the molecular basis for learning and short-and long-term memories. This is also true for drug memories formed during the development of substance use disorders like morphine and cocaine use disorders. In cocaine use disorder it was found that irreversible A2AR-D2R complexes with an allosteric brake on D2R recognition and signaling are formed in increased densities in the ventral enkephalin positive striatal-pallidal GABA antireward neurons. In this perspective article we discuss and propose how an increase in opioid heteroreceptor complexes, containing MOR-DOR, MOR-MOR and MOR-D2R, and their balance with each other and A2AR-D2R complexes in the striatal-pallidal enkephalin positive GABA antireward neurons, may represent markers for development of morphine use disorders. We suggest that increased formation of MOR-DOR complexes takes place in the striatal-pallidal enkephalin positive GABA antireward neurons after chronic morphine treatment in part through recruitment of MOR from the MOR-D2R complexes due to the possibility that MOR upon morphine treatment can develop a higher affinity for DOR. As a result, increased numbers of D2R monomers/homomers in these neurons become free to interact with the A2A receptors found in high densities within such neurons. Increased numbers of A2AR-D2R heteroreceptor complexes are formed and contribute to enhanced firing of these antireward neurons due to loss of inhibitory D2R protomer signaling which finally leads to the development of morphine use disorder. Development of cocaine use disorder may instead be reduced through enkephalin induced activation of the MOR-DOR complex inhibiting the activity of the enkephalin positive GABA antireward neurons. Altogether, we propose that these altered complexes could be pharmacological targets to modulate the reward and the development of substance use disorders.


2021 ◽  
Vol 22 (4) ◽  
pp. 1927
Author(s):  
Dasiel O. Borroto-Escuela ◽  
Patrizia Ambrogini ◽  
Barbara Chruścicka ◽  
Maria Lindskog ◽  
Minerva Crespo-Ramirez ◽  
...  

Serotonin communication operates mainly in the extracellular space and cerebrospinal fluid (CSF), using volume transmission with serotonin moving from source to target cells (neurons and astroglia) via energy gradients, leading to the diffusion and convection (flow) of serotonin. One emerging concept in depression is that disturbances in the integrative allosteric receptor–receptor interactions in highly vulnerable 5-HT1A heteroreceptor complexes can contribute to causing major depression and become novel targets for the treatment of major depression (MD) and anxiety. For instance, a disruption and/or dysfunction in the 5-HT1A-FGFR1 heteroreceptor complexes in the raphe-hippocampal serotonin neuron systems can contribute to the development of MD. It leads inter alia to reduced neuroplasticity and potential atrophy in the raphe-cortical and raphe-striatal 5-HT pathways and in all its forebrain networks. Reduced 5-HT1A auto-receptor function, increased plasticity and trophic activity in the midbrain raphe 5-HT neurons can develop via agonist activation of allosteric receptor–receptor interactions in the 5-HT1A-FGFR1 heterocomplex. Additionally, the inhibitory allosteric receptor–receptor interactions in the 5-HT1AR-5-HT2AR isoreceptor complex therefore likely have a significant role in modulating mood, involving a reduction of postjunctional 5-HT1AR protomer signaling in the forebrain upon activation of the 5-HT2AR protomer. In addition, oxytocin receptors (OXTRs) play a significant and impressive role in modulating social and cognitive related behaviors like bonding and attachment, reward and motivation. Pathological blunting of the OXTR protomers in 5-HT2AR and especially in 5-HT2CR heteroreceptor complexes can contribute to the development of depression and other types of psychiatric diseases involving disturbances in social behaviors. The 5-HTR heterocomplexes are novel targets for the treatment of MD.


2020 ◽  
Vol 190 ◽  
pp. 111289 ◽  
Author(s):  
Michael Di Palma ◽  
Stefano Sartini ◽  
Davide Lattanzi ◽  
Riccardo Cuppini ◽  
Mariana Pita-Rodriguez ◽  
...  

The Physician ◽  
2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Ashwin Venkatesh

Poster presented at BAPIO National Conference, London 2019 Peer reviewed by Subarna Chakravorty PhD & Sunil Daga PhD


2020 ◽  
Vol 225 (7) ◽  
pp. 2153-2164
Author(s):  
Eva Martínez-Pinilla ◽  
Alberto J. Rico ◽  
Rafael Rivas-Santisteban ◽  
Jaume Lillo ◽  
Elvira Roda ◽  
...  

2020 ◽  
Vol 170 ◽  
pp. 108070 ◽  
Author(s):  
Manuel Narváez ◽  
Yuniesky Andrade-Talavera ◽  
Ismael Valladolid-Acebes ◽  
Magnus Fredriksson ◽  
Pia Siegele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document