Acting upon background of understanding rather than role

2019 ◽  
Vol 2 (2) ◽  
pp. 241-262
Author(s):  
Michaela Albl-Mikasa

Abstract Research into dialogue interpreting has thus far focused on its interactional dimension. Only recently have cognitive approaches been introduced. This article uses the situated cognition and functional pragmatics paradigms to explain how a broad and holistic understanding of the (healthcare) set-up in which dialogue interpreting assignments take place enables interpreters to develop an awareness of the purpose-orientation of medical professionals’ (inter)action plan. This understanding forms part of an inferential mental backdrop that allows interpreters to go from bottom-up drifting to gaining top-down control over their task. On the basis of a corpus of 19 interpreter-mediated doctor-patient encounters, the article suggests that it is acting upon an integral background of understanding as inferential basis (rather than role) that empowers dialogue interpreters to perform successfully.

2018 ◽  
Vol 22 (8) ◽  
pp. 4425-4447 ◽  
Author(s):  
Manuel Antonetti ◽  
Massimiliano Zappa

Abstract. Both modellers and experimentalists agree that using expert knowledge can improve the realism of conceptual hydrological models. However, their use of expert knowledge differs for each step in the modelling procedure, which involves hydrologically mapping the dominant runoff processes (DRPs) occurring on a given catchment, parameterising these processes within a model, and allocating its parameters. Modellers generally use very simplified mapping approaches, applying their knowledge in constraining the model by defining parameter and process relational rules. In contrast, experimentalists usually prefer to invest all their detailed and qualitative knowledge about processes in obtaining as realistic spatial distribution of DRPs as possible, and in defining narrow value ranges for each model parameter.Runoff simulations are affected by equifinality and numerous other uncertainty sources, which challenge the assumption that the more expert knowledge is used, the better will be the results obtained. To test for the extent to which expert knowledge can improve simulation results under uncertainty, we therefore applied a total of 60 modelling chain combinations forced by five rainfall datasets of increasing accuracy to four nested catchments in the Swiss Pre-Alps. These datasets include hourly precipitation data from automatic stations interpolated with Thiessen polygons and with the inverse distance weighting (IDW) method, as well as different spatial aggregations of Combiprecip, a combination between ground measurements and radar quantitative estimations of precipitation. To map the spatial distribution of the DRPs, three mapping approaches with different levels of involvement of expert knowledge were used to derive so-called process maps. Finally, both a typical modellers' top-down set-up relying on parameter and process constraints and an experimentalists' set-up based on bottom-up thinking and on field expertise were implemented using a newly developed process-based runoff generation module (RGM-PRO). To quantify the uncertainty originating from forcing data, process maps, model parameterisation, and parameter allocation strategy, an analysis of variance (ANOVA) was performed.The simulation results showed that (i) the modelling chains based on the most complex process maps performed slightly better than those based on less expert knowledge; (ii) the bottom-up set-up performed better than the top-down one when simulating short-duration events, but similarly to the top-down set-up when simulating long-duration events; (iii) the differences in performance arising from the different forcing data were due to compensation effects; and (iv) the bottom-up set-up can help identify uncertainty sources, but is prone to overconfidence problems, whereas the top-down set-up seems to accommodate uncertainties in the input data best. Overall, modellers' and experimentalists' concept of model realism differ. This means that the level of detail a model should have to accurately reproduce the DRPs expected must be agreed in advance.


2017 ◽  
Author(s):  
Kevin J. Sanchez ◽  
Greg C. Roberts ◽  
Radiance Calmer ◽  
Keri Nicoll ◽  
Eyal Hashimshoni ◽  
...  

Abstract. Top-down and bottom-up aerosol-cloud-radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud-radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top radiative flux (δRF) by between 30 W m−2 and 40 W m−2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30 % of simulated CDNC. In cases with a well-mixed boundary layer, δRF is less than 25 W m−2 after accounting for cloud-top entrainment, compared to less than 50 W m−2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m−2, even after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.


2017 ◽  
Vol 17 (16) ◽  
pp. 9797-9814 ◽  
Author(s):  
Kevin J. Sanchez ◽  
Gregory C. Roberts ◽  
Radiance Calmer ◽  
Keri Nicoll ◽  
Eyal Hashimshoni ◽  
...  

Abstract. Top-down and bottom-up aerosol–cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol–cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol–cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m−2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNCs) were within 30 % of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m−2 after accounting for cloud-top entrainment and up to 50 W m−2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m−2, even high (> 30 W m−2) after accounting for cloud-top entrainment. This work demonstrates the need to take in situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux. 1The regulatory term for UAV is remotely piloted aircraft (RPA).


2008 ◽  
Vol 2 (1-2) ◽  
pp. 71-79
Author(s):  
Norbert Grasselli

Experts have been involved in the problems of determining microregions in Hungary since their establishment. In Hungary, the microregions (NUTS17 IV) were established by top-down method. This system cut through existing economic and cultural connections. The villages set up their own bottom-up microregions, which have tighter connections than the official regions. In my article, I estimate the economic potential of two regions, the regions Erdôspuszta (Hungary) and Hohenlohe (Germany), after analyzing the relevant literature on determining economic potential. Projects realized by enterprises and civil organizations have strategic significance in the economies of settlements, and it is true that their developers are not members of the formal management of the settlement. The local governments, however, should conduct realization and topdown of projects, and they have to have an image of the future and strategic plans. The present Hungarian practice, which appears in supply oriented applications, is not expedient over the long-run.The projects of settlements are run parallel to each other; they therefore fail to reach any synergic effect. The aim is harmonizing and building projects onto each other.


Author(s):  
Thomas Boraud

This concluding chapter summarizes the book’s content. Twenty-five years since Schultz’s, Newsome’s, and Movshon’s experiments, neuroscientists joined the community of psychologists and economists who studied rationality. Together, they were able to set up experimental paradigms to try to better understand the neurobiological foundations of the learning and decision-making processes. The conceptual framework defined by all of these paradigms has been called neuroeconomics. Neuroeconomics is therefore the study of the neural correlates of rationality. As such, this book can be considered as an essay on neuroeconomics. In contrast to the classical top-down approach, the text proposes a bottom-up approach on decision-making. By addressing the problem of rationality from a dual connectionist and evolutionist perspective, the book highlights that the brain is not capable of producing a purely rational process.


PsycCRITIQUES ◽  
2005 ◽  
Vol 50 (19) ◽  
Author(s):  
Michael Cole
Keyword(s):  
Top Down ◽  

Sign in / Sign up

Export Citation Format

Share Document