Functional role of polyamines and polyamine-metabolizing enzymes during salinity, drought and cold stresses.

Author(s):  
R Aryadeep ◽  
D Kaushik
2009 ◽  
Vol 221 (03) ◽  
Author(s):  
B Steiger ◽  
I Leuschner ◽  
D Denkhaus ◽  
D von Schweinitz ◽  
T Pietsch
Keyword(s):  

1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S279-S294 ◽  
Author(s):  
Paul Robel

ABSTRACT Of the information available on steroid hormone metabolism in responsive tissues, only that relating hormone metabolism to physiological activity is reviewed, i. e. metabolite activity in isolated in vitro systems, binding of metabolites to target tissue receptors, specific steroid hormone metabolizing enzymes and relationship of hormone metabolism to target organ physiological state. Further, evidence is presented in the androgen field, demonstrating 5α-reduced metabolites, formed inside the target cells, as active compounds. This has led to a consideration of testosterone as a »prehormone«. The possibility that similar events take place in tissues responding to progesterone is discussed. Finally, the role of hormone metabolism in the regulation of hormone availability and/or renewal in target cells is discussed. In this context, reference is made to the potential role of plasma binding proteins and cytosol receptors.


2020 ◽  
Vol 9 (2) ◽  
pp. 78-88
Author(s):  
Mulugeta Mulat ◽  
Raksha Anand ◽  
Fazlurrahman Khan

The diversity of indole concerning its production and functional role has increased in both prokaryotic and eukaryotic systems. The bacterial species produce indole and use it as a signaling molecule at interspecies, intraspecies, and even at an interkingdom level for controlling the capability of drug resistance, level of virulence, and biofilm formation. Numerous indole derivatives have been found to play an important role in the different systems and are reported to occur in various bacteria, plants, human, and plant pathogens. Indole and its derivatives have been recognized for a defensive role against pests and insects in the plant kingdom. These indole derivatives are produced as a result of the breakdown of glucosinolate products at the time of insect attack or physical damages. Apart from the defensive role of these products, in plants, they also exhibit several other secondary responses that may contribute directly or indirectly to the growth and development. The present review summarized recent signs of progress on the functional properties of indole and its derivatives in different plant systems. The molecular mechanism involved in the defensive role played by indole as well as its’ derivative in the plants has also been explained. Furthermore, the perspectives of indole and its derivatives (natural or synthetic) in understanding the involvement of these compounds in diverse plants have also been discussed.


Sign in / Sign up

Export Citation Format

Share Document