scholarly journals Effect of protein restriction on messenger RNA of insulin-like growth factor-I and insulin-like growth factor-binding proteins in liver of ovariectomized rats

1998 ◽  
Vol 79 (5) ◽  
pp. 447-453 ◽  
Author(s):  
Yusuke Higashi ◽  
Asako Takenaka ◽  
Shin-Ichiro Takahashi ◽  
Tadashi Noguchi

Effects of dietary protein restriction and ovariectomy on plasma concentrations and hepatic messenger RNA (mRNA) of insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBP) were investigated in young female rats. Ovariectomy increased plasma IGF-I concentration in rats fed on either a 50 g casein/kg diet (protein-restricted diet) or a 200 g casein/kg diet (control diet), but it increased IGF-I mRNA in liver only in the rats fed on the control diet. On the other hand, by Western ligand blot analysis, we observed that ovariectomy increased plasma IGFBP-3 concentration, and decreased plasma IGFBP-4 concentration. Ovariectomy did not affect IGFBP-1 and IGFBP-2 mRNA in liver, but dietary protein restriction significantly increased them, which may correspond to their plasma concentrations. The present results show that ovarian hormones and dietary protein content affect the plasma concentrations of IGF-I, IGFBP-3 and IGFBP-4 and hepatic mRNA of IGF-I, IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-4 in different manners.

1992 ◽  
Vol 132 (1) ◽  
pp. 141-147 ◽  
Author(s):  
J.-P. Thissen ◽  
L. E. Underwood

ABSTRACT Dietary protein restriction in young rats decreases serum insulin-like growth factor-I (IGF-I) concentrations and the amount of liver IGF-I mRNA, suggesting that regulation for the liver IGF-I gene expression in this model occurs at a pretranslational level. To determine whether there is also translational control, we assessed the association of the liver IGF-I mRNA transcripts with polysomes in livers of normally fed (15% dietary protein) versus protein-restricted (5% dietary protein) rats. One week of dietary protein restriction reduces serum IGF-I concentrations by 54% and the amount of liver IGF-I mRNA by 35%, with the 7·5 kb size-class of IGF-I mRNA being the most affected (−48%). Protein restriction reduces the amount of the polysomal IGF-I mRNAs by 30%, a value in close agreement with the changes in total IGF-I mRNAs. Protein restriction is not associated with changes in the distribution of IGF-I mRNAs between the polysomal and non-polysomal fractions. All major size-classes of IGF-I mRNA transcripts (7·5, 4·7, 1·7, 0·9–1·2 kb) are associated with the polysomes in both dietary groups, suggesting involvement in the initiation phase of the IGF-I translation. We conclude that no untranslatable pool of IGF-I mRNAs is present in the liver of protein-restricted animals. Protein restriction, however, decreases slightly the mean size of polysomes. This decrease in ribosomal number associated with the IGF-I mRNA could decrease translational efficiency. Our data suggest that dietary protein restriction does not impair the initiation of IGF-I mRNA translation. Journal of Endocrinology (1992) 132, 141–147


2006 ◽  
Vol 16 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Tiffany G. Harris ◽  
Howard D. Strickler ◽  
Herbert Yu ◽  
Michael N. Pollak ◽  
E. Scott Monrad ◽  
...  

1993 ◽  
Vol 136 (1) ◽  
pp. 91-104 ◽  
Author(s):  
L. R. Donahue ◽  
W. G. Beamer

ABSTRACT Although GH is known to regulate somatic growth during development, its role in regulating adult body composition is less well defined. The effects of GH on individual body compartments – water, fat, protein and mineral – are achieved both by the action of GH and by a GH-induced hormone, insulin-like growth factor-I (IGF-I). We used a genetic model of GH deficiency, the 'little' (gene symbol lit) mouse, to determine the GH regulation of IGF-I and its insulin-like growth factor-binding proteins (IGFBPs) and to define the interaction between these hormones and each body compartment in adults. Our results showed that GH-deficient lit/lit mice had reduced levels of serum IGF-I (range 38–130 μg/l) compared with normal lit/+ littermates (range 432–567 μg/l) between 2 and 52 weeks of age. The lit/lit mice did not experience the fivefold increase in IGF-I between 2 and 4 weeks of age that was seen in lit/+ mice. In lit/lit serum, overall binding of 125I-labelled IGF-I to the four IGFBPs was reduced, solely in response to a reduced amount of IGFBP-3. No overall differences were found between lit/lit and lit/+ mice in the binding of 125I-labelled IGF-I to IGFBP-2, -1 or -4. Age-related declines in IGF-I and IGFBPs were seen in lit/lit mice. However, adult levels of IGF-I were maintained in lit/+ mice to at least 52 weeks of age, as were levels of IGFBP-1 and -4, while IGFBP-3 and -2 declined with age. With respect to body composition, comparison of lit/lit with lit/+ mice showed that the lit/lit mice were characterized by abnormally large adipose tissue stores and reduced body water, protein and mineral from 2 weeks onward. These changes occurred despite normal energy intake in lit/lit mice up to 52 weeks of age, indicating that neither undernutrition nor hyperphagia is characteristic of this GH-induced model of obesity. Furthermore, lit/lit males accrued more body fat beginning at an earlier age than lit/lit females. With advancing age, the per cent body fat increased in both lit/lit and lit/+ mice, while the per cent body water and mineral declined. In lit/lit but not lit/+ mice, per cent protein also declined with age. The changes in body water and fat are attributable to lack of adequate GH in the genetically GH-deficient lit/lit mouse. On the other hand, the changes in body protein are more likely to be effects of IGF-I. Changes in mineral observed in lit/lit mice could be the result of action by GH, IGF-I or both hormones. Therefore, when GH is chronically manipulated by GH deficiency as in lit/lit mice, by GH excess as in acromegaly, or by GH therapy, all four body compartments are affected, suggesting that GH therapy is most valuable when the treatment goal is to alter overall body composition. Journal of Endocrinology (1993) 136, 91–104


1999 ◽  
Vol 81 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Myriam Sanchez-Gomez ◽  
Kjell Malmlöf ◽  
Wilson Mejia ◽  
Antonio Bermudez ◽  
Maria Teresa Ochoa ◽  
...  

The aim of the present study was to investigate the influence of dietary protein level on the protein anabolic effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I). Female growing rats were fed on either a high- or a low-protein diet with crude protein contents of 222 and 83 g/kg respectively. The diets contained the same amount of metabolizable energy (15·1 MJ/kg) and were given during a 14 d period. During the same time, three groups of rats (n 8) on each diet received subcutaneous infusions of either saline, recombinant human GH (rhGH) or recombinant human IGF-I (rhIGF-I). rhGH and rhIGF-I were given in doses of 360 and 500 μg/d respectively. The low-protein diet alone reduced significantly (P < 0·05) IGF-I concentrations in serum and in tissue taken from the gastrocnemius muscle as well as IGF-I mRNA from the same muscle. The responses to rhGH and rhIGF-I in terms of muscle IGF-I and its mRNA were variable. However, when rhIGF-I was infused into rats on the high-protein diet, significantly elevated levels of IGF-I in muscle tissues could be observed. This was associated with a significantly (P < 0·05) increased N balance, whereas rhGH significantly (P < 0·05) enhanced the N balance in rats on the low-protein diet. Thus, it can be concluded that the level of dietary protein ingested regulates not only the effect of IGF-I on whole-body N economy but also the regulation of IGF-I gene expression in muscles. The exact mechanism by which GH exerts its protein anabolic effect, however, remains to be elucidated.


Endocrinology ◽  
1991 ◽  
Vol 129 (1) ◽  
pp. 429-435 ◽  
Author(s):  
JEAN-PAUL THISSEN ◽  
SANDRINE TRIEST ◽  
BILLIE M. MOATS-STAATS ◽  
LOUIS E. UNDERWOOD ◽  
TEKLA MAUERHOFF ◽  
...  

2002 ◽  
Vol 163 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Z.J. Champion ◽  
B.H. Breier ◽  
W.E. Ewen ◽  
T.T. Tobin ◽  
P.J. Casey

1993 ◽  
Vol 129 (5) ◽  
pp. 399-408 ◽  
Author(s):  
Torben Laursen ◽  
Jens OL Jorgensen ◽  
Hans Ørskov ◽  
Jens Møller ◽  
Alan G Harris ◽  
...  

Animal studies have demonstrated that in addition to inhibiting growth hormone (GH) secretion octreotide inhibits in a direct manner hepatic or peripheral insulin-like growth factor I (IGF-I) generation. To test this hypothesis in humans we studied ten GH-deficient patients with frequent blood sampling during 38 h on two occasions. Regular GH therapy was discontinued 72 h prior to each study period. At the start of each study a subcutaneous (sc) injection of GH (3 IU/m2) was given (at 18.00 h). In a single-blinded crossover design, patients received a continuous sc infusion of either octerotide (200 μg/24 h) or placebo (saline). The pharmacokinetics of GH were similar on the two occasions. The area under the curve±sem of serum GH was 142.5±53.6 μg·l−1·h−1 (octreotide) and 144.8±41.8 μg·l−1·h−1 (placebo), (p=0.73); Cmax (μg/l) was 12.5±1.47 (octreotide) and 12.8±1.42 (placebo) (p=0.83), and Tmax (h) was 6.1±0.97 (octreotide) and 5.2±0.65 (placebo) (p=0.49). Growth hormone administration was associated with an increase in serum IGF-I (μg/l), which was identical during the two studies, from 85.3±19.4 to 174.25±30.3 for octreotide and from 97.0±26.4 to 158.8±28.2 for placebo. Mean IGF-I levels (μg/l) were 138.2±25.1 (octreotide) and 134.5±28.6 (placebo) (p=0.78). Similarly, the increase in IGF binding protein 3 (IGFBP-3) levels was identical. Mean IGFBP-3 levels (μg/l) were 2303±323 (octreotide) and 2200±361 (placebo) (p=0.25). Mean insulin levels were significantly lower during octreotide treatment (39.9±17.9 mU/l) than during placebo (59.7±17.8 mU/l) (p<0.05). Mean blood glucose levels were elevated significantly during octreotide infusion (5.98±0.23 mmol/l for octreotide and 5.07±0.16 mmol/l for placebo; p=0.001). Glucagon levels decreased non-significantly (p=0.07) and IGFBP-1 levels tended to increase during infusion of octreotide although not significantly (p=0.41). Levels of the lipid intermediates were identical on the two occasions. Alanine and lactate levels were significantly increased during octreotide infusion. Mean levels of blood alanine (μmol/l) were 470.8±24.2 (octreotide) and 360.1±17.8 (placebo) (p<0.02). Mean levels of blood lactate were 1038±81.0 (octreotide) and 894.4±73.8 (placebo) (p<0.04). We conclude that short-term continuous sc infusion of octreotide has no direct effect on the generation of IGF-I or the pharmacokinetics of exogenous GH in GH-deficient man.


1990 ◽  
Vol 124 (1) ◽  
pp. 151-158 ◽  
Author(s):  
R. A. Siddiqui ◽  
H. T. Blair ◽  
S. N. McCutcheon ◽  
D. D. S. Mackenzie ◽  
P. D. Gluckman ◽  
...  

ABSTRACT A study was conducted to investigate developmental patterns of plasma concentrations of insulin-like growth factor-I (IGF-I), body growth and body composition in mice from lines selected for seven generations on the basis of low (L) or high (H) plasma IGF-I, and in a random-bred control (C) line. Litter size was standardized to eight individuals with equal sex ratios (as far as possible) within 48 h of birth. Pups were weaned at an average of 21 days and separated on the basis of sex. Blood samples were collected from one male and one female of each litter on days, 21, 42, 63 and 105 for analysis of plasma concentrations of IGF-I. The animals were then killed and analysed for water, fat and crude protein content. The plasma concentration of IGF-I was influenced by line (P<0·05) but not by sex. Significant (P< 0·001) differences in liveweight between mice from L and H lines were first evident at 21 days of age. From 28 until 105 days of age the H line was significantly (P< 0·001) heavier than both L and C lines, but differences between C and L lines were inconsistent and mostly non-significant. The growth velocity of the H line was significantly greater than that of C or L lines between 14 and 42 days of age, but differences in growth velocities of C compared with L lines were generally non-significant. Nose–anus length was significantly (P<0·01) affected by sex and line from 42 to 105 days of age, but anus–tail length was not affected by sex or line at any age. Effects of sex and line on empty (digesta-free) body weight and wet weights of carcass and skin plus viscera fractions followed a pattern similar to those of liveweights. The effects of sex and line on protein, water and fat content also paralleled their effects on body size. Differences between males and females, and between the lines, in amount of protein, water and fat could be entirely accounted for by the corresponding differences in body weight. It is concluded from these results that divergent selection on the basis of plasma IGF-I at 42 days of age resulted in lines of animals differing in plasma IGF-I from 21 days of age until maturity. These divergent concentrations of IGF-I are associated with differences between the lines in body growth, particularly during the period of accelerated growth at puberty, but not with changes in body composition. Journal of Endocrinology (1990) 124, 151–158


Sign in / Sign up

Export Citation Format

Share Document