A brief period of intensive cardiac rehabilitation improves global longitudinal strain and diastolic function after a first uncomplicated myocardial infarction

2017 ◽  
Vol 72 (3) ◽  
pp. 284-291 ◽  
Author(s):  
Gabriella Malfatto ◽  
Miriam Revera ◽  
Giovanna Branzi ◽  
Francesca Ciambellotti ◽  
Alessia Giglio ◽  
...  
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Holzknecht ◽  
M Reindl ◽  
C Tiller ◽  
I Lechner ◽  
T Hornung ◽  
...  

Abstract Background Left ventricular ejection fraction (LVEF) is the parameter of choice for left ventricular (LV) function assessment and risk stratification of patients with ST-elevation myocardial infarction (STEMI); however, its prognostic value is limited. Other measures of LV function such as global longitudinal strain (GLS) and mitral annular plane systolic excursion (MAPSE) might provide additional prognostic information post-STEMI. However, comprehensive investigations comparing these parameters in terms of prediction of hard clinical events following STEMI are lacking so far. Purpose We aimed to investigate the comparative prognostic value of LVEF, MAPSE and GLS by cardiac magnetic resonance (CMR) imaging in the acute stage post-STEMI for the occurrence of major adverse cardiac events (MACE). Methods This observational study included 407 consecutive acute STEMI patients treated with primary percutaneous coronary intervention (PCI). Comprehensive CMR investigations were performed 3 [interquartile range (IQR): 2–4] days after PCI to determine LVEF, GLS and MAPSE as well as myocardial infarct characteristics. Primary endpoint was the occurrence of MACE defined as composite of death, re-infarction and congestive heart failure. Results During a follow-up of 21 [IQR: 12–50] months, 40 (10%) patients experienced MACE. LVEF (p=0.005), MAPSE (p=0.001) and GLS (p<0.001) were significantly related to MACE. GLS showed the highest prognostic value with an area under the curve (AUC) of 0.71 (95% CI 0.63–0.79; p<0.001) compared to MAPSE (AUC: 0.67, 95% CI 0.58–0.75; p=0.001) and LVEF (AUC: 0.64, 95% CI 0.54–0.73; p=0.005). After multivariable analysis, GLS emerged as sole independent predictor of MACE (HR: 1.22, 95% CI 1.11–1.35; p<0.001). Of note, GLS remained associated with MACE (p<0.001) even after adjustment for infarct size and microvascular obstruction. Conclusion CMR-derived GLS emerged as strong and independent predictor of MACE after acute STEMI with additive prognostic validity to LVEF and parameters of myocardial damage. Funding Acknowledgement Type of funding source: None


2019 ◽  
Vol 6 (4) ◽  
pp. 81-89
Author(s):  
Gowsini Joseph ◽  
Tomas Zaremba ◽  
Martin Berg Johansen ◽  
Sarah Ekeloef ◽  
Einar Heiberg ◽  
...  

The aim of this study was to investigate if there was an association between infarct size (IS) measured by cardiac magnetic resonance (CMR) and echocardiographic global longitudinal strain (GLS) in the early stage of acute myocardial infarction in patients with preserved left ventricular ejection fraction (LVEF). Patients with ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention were assessed with CMR and transthoracic echocardiogram within 1 week of hospital admission. Two-dimensional speckle tracking was performed using a semi-automatic algorithm (EchoPac, GE Healthcare). Longitudinal strain curves were generated in a 17-segment model covering the entire left ventricular myocardium. GLS was calculated automatically. LVEF was measured by auto-LVEF in EchoPac. IS was measured by late gadolinium enhancement CMR in short-axis views covering the left ventricle. The study population consisted of 49 patients (age 60.4 ± 9.7 years; 92% male). The study population had preserved echocardiographic LVEF with a mean of 45.8 ± 8.7%. For each percent increase of IS, we found an impairment in GLS by 1.59% (95% CI 0.57–2.61), P = 0.02, after adjustment for sex, age and LVEF. No significant association between IS and echocardiographic LVEF was found: −0.25 (95% CI: −0.61 to 0.11), P = 0.51. At the segmental level, the strongest association between IS and longitudinal strain was found in the apical part of the LV: impairment of 1.69% (95% CI: 1.14–2.23), P < 0.001, for each percent increase in IS. In conclusion, GLS was significantly associated with IS in the early stage of acute myocardial infarction in patients with preserved LVEF, and this association was strongest in the apical part of the LV. No association between IS and LVEF was found.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
C J Park ◽  
L S Tan ◽  
P Huang ◽  
P J Tan ◽  
J H J See

Abstract Background Pre-operative echocardiography is performed in selected groups of patients for cardiac risk stratification prior to surgery. Many parameters, including Left Ventricular Ejection Fraction (LVEF), are assessed during echocardiography. While many studies have cited association between low LVEF and poor operative outcomes such as perioperative myocardial infarction or cardiogenic pulmonary edema, LVEF has limitations such as left ventricular (LV) cavity border tracing, geometric assumptions and inter-observer variability. LVEF may also appear normal in the presence of LV hypertrophy and a small LV cavity size. Studies have described the routine use of global longitudinal strain (GLS) as an alternative measure of ventricular function, with GLS having been reported to be a reliable marker in detecting subclinical LV dysfunction. This adds incremental value in predicting myocardial function and in risk stratification. In fact, some studies have documented GLS being a useful preoperative parameter in predicting postoperative LV dysfunction after cardiac valve surgery. Purpose The aim of this study is to determine the value of GLS in predicting post-operative outcomes in patients undergoing non-cardiac surgeries. Methods This was a retrospective study of all patients who had echocardiography performed for a pre-operative indication from February 2017 to October 2017. These patients were screened for those who had normal LVEF, had undergone subsequent non-cardiac surgery, and had post-operative troponins measured. Medical records were traced for baseline demographics, past medical history and echocardiographic features. GLS evaluation was prospectively performed using TOMTEC-ARENA (TOMTEC Imaging Systems GmbH) by assessors blinded to patient outcomes. Outcomes for major adverse cardiovascular events and mortality up to 1 year post surgery were collected. Post-op myocardial injury was defined as a peak Troponin T value of &gt;30 ng/L or a &gt;20% increment from baseline. Results A total of 42 patients were included. 61.9% (n = 26) were male and mean age was 72.3 years. Only 75.6% of patients were fully independent with activities of daily living and mean creatinine was 153.4μmol/L. Mortality at 1 year was 16.7% (n = 7) and 28.6% (n = 12) were deemed to have post-operative myocardial injury. 1-year mortality was associated with a lower GLS (-23.8% vs -19.2%, p = 0.001). However, GLS was not correlated with post-operative myocardial injury or hospital readmissions. In our study population, only a history of past myocardial infarction predicted post-op myocardial injury (58.3% vs 16.7%, p = 0.019). Conclusion Our study did not demonstrate the utility of GLS in predicting post-operative events, but this is likely because of the small sample size with low event rates. Nevertheless, GLS values did correlate with 1-year mortality and could be a marker of frailty and an increased mortality risk.


Sign in / Sign up

Export Citation Format

Share Document