A Robust Near-Infrared Calibration Model for the Determination of Chlorophyll Concentration in Tree Leaves with a Calibration Transfer Method

2015 ◽  
Vol 48 (11) ◽  
pp. 1707-1719 ◽  
Author(s):  
Man Wang ◽  
Kaiyi Zheng ◽  
Guijuan Yang ◽  
Wenjun Ma ◽  
Junhui Wang ◽  
...  
1992 ◽  
Vol 46 (5) ◽  
pp. 764-771 ◽  
Author(s):  
Yongdong Wang ◽  
Bruce R. Kowalski

Near-infrared (NIR) spectroscopy has been widely accepted as a quantitative technique in which multivariate calibration plays an important role. The application of NIR to process analysis, however, has been largely limited by a problem identified as calibration transfer, the attempt to transfer a well-established calibration model from one instrument (e.g., located in the central laboratory) to another instrument of the same type (e.g., located on an industrial process). A calibration transfer method called piecewise direct standardization (PDS) is applied to a set of gasoline samples measured on two different NIR spectrometers. On the basis of the measurement of a small set of transfer samples on both instruments, a structured transformation matrix can be determined and applied to transform spectra between two instruments, enabling the transfer of calibration models. The effect of spectrum preprocessing on standardization is studied with the use of a set of gasoline samples. In a separate study, the day-to-day instrument variation as observed from the change in the polystyrene spectrum is related to the prediction of moisture, oil, protein, and starch content in corn samples, and then the possibility of using such generic standards to replace real samples in a transfer set is explored. In all cases, a standard error for prediction comparable to full set cross-validation is obtained through standardization.


2002 ◽  
Vol 10 (1) ◽  
pp. 27-35 ◽  
Author(s):  
C.V. Greensill ◽  
K.B. Walsh

The transfer of predictive models among photodiode array based, short wave near infrared spectrometers using the same illumination/detection optical geometry has been attempted using various chemometric techniques, including slope and bias correction (SBC), direct standardisation (DS), piecewise direct standardisation (PDS), double window PDS (DWPDS), orthogonal signal correction (OSC), finite impulse transform (FIR) and wavelet transform (WT). Additionally, an interpolation and photometric response correction method, a wavelength selection method and a model updating method were assessed. Calibration transfer was attempted across two populations of mandarin fruit. Model performance was compared in terms of root mean squared error of prediction ( RMSEP), using Fearn's significance testing, for calibration transfer (standardisation) between pairs of spectrometers from a group of four spectrometers. For example, when a calibration model (Root Mean Square Error of Cross-Validation [ RMSECV = 0.26% soluble solid content (SSC)], developed on one spectrometer, was used with spectral data collected on another spectrometer, a poor prediction resulted ( RMSEP = 2.5% SSC). A modified WT method performed significantly better (e.g. RMSEP = 0.25% SSC) than all other standardisation methods (10 of 12 cases), and almost on a par with model updating (MU) (nine cases with no significant difference, one case and two cases significantly better for WT and MU, respectively).


2017 ◽  
Vol 63 (No. 5) ◽  
pp. 226-230 ◽  
Author(s):  
Zbíral Jiří ◽  
Čižmár David ◽  
Malý Stanislav ◽  
Obdržálková Elena

Determining and characterizing soil organic matter (SOM) cheaply and reliably can help to support decisions concerning sustainable land management and climate policy. Glomalin was recommended as one of possible indicators of SOM quality. Extracting glomalin from and determining it in soils using classical chemical methods is too complicated and therefore near-infrared spectroscopy (NIRS) was studied as a method of choice for the determination of glomalin. Representative sets of 84 different soil samples from arable land and grasslands and 75 forest soils were used to develop NIRS calibration models. The parameters of the NIRS calibration model (R = 0.90 for soils from arable land and grasslands and R = 0.94 for forest soils) proved that glomalin can be determined in air-dried soils by NIRS with adequate trueness and precision simultaneously with determination of nitrogen and oxidizable carbon.


2002 ◽  
Vol 56 (5) ◽  
pp. 599-604 ◽  
Author(s):  
Young-Ah Woo ◽  
Yoko Terazawa ◽  
Jie Yu Chen ◽  
Chie Iyo ◽  
Fuminori Terada ◽  
...  

A new measurement unit, the MilkSpec-1, has been developed to determine rapidly and nondestructively the content of fat, lactose, and protein in raw milk using near-infrared transmittance spectroscopy. The spectral range over 700 to 1100 nm was used. This unit was designed for general glass test tubes, 12 mm in diameter and 10 mL in volume. Al2O3 with a thickness of 2.5 mm was found to be optimum as a reference for acquiring the milk spectrum for this measurement. The NIR transmittance spectra of milk were acquired from raw milk samples without homogenization. The calibration model was developed and predicted by using a partial least-squares (PLS) algorithm. In order to reduce the scattering effect due to fat globules and casein micelles in NIR transmittance spectra, multiplicative scatter correction (MSC) and/or second derivative treatment were performed. MSC treatment proved to be useful for the development of calibration models for fat and protein. This study resulted in low standard errors of prediction (SEP), with 0.06, 0.10, and 0.10% for fat, lactose, and protein, respectively. It is shown that accurate, rapid, and nondestructive determination of milk composition could be successfully performed by using the MilkSpec-1, presenting the potential use of this method for real-time on-line monitoring in a milking process.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mohd Yusop Nurida ◽  
Dolmat Norfadilah ◽  
Mohd Rozaiddin Siti Aishah ◽  
Chan Zhe Phak ◽  
Syafiqa M. Saleh

The analytical methods for the determination of the amine solvent properties do not provide input data for real-time process control and optimization and are labor-intensive, time-consuming, and impractical for studies of dynamic changes in a process. In this study, the potential of nondestructive determination of amine concentration, CO2 loading, and water content in CO2 absorption solvent in the gas processing unit was investigated through Fourier transform near-infrared (FT-NIR) spectroscopy that has the ability to readily carry out multicomponent analysis in association with multivariate analysis methods. The FT-NIR spectra for the solvent were captured and interpreted by using suitable spectra wavenumber regions through multivariate statistical techniques such as partial least square (PLS). The calibration model developed for amine determination had the highest coefficient of determination (R2) of 0.9955 and RMSECV of 0.75%. CO2 calibration model achieved R2 of 0.9902 with RMSECV of 0.25% whereas the water calibration model had R2 of 0.9915 with RMSECV of 1.02%. The statistical evaluation of the validation samples also confirmed that the difference between the actual value and the predicted value from the calibration model was not significantly different and acceptable. Therefore, the amine, CO2, and water models have given a satisfactory result for the concentration determination using the FT-NIR technique. The results of this study indicated that FT-NIR spectroscopy with chemometrics and multivariate technique can be used for the CO2 solvent monitoring to replace the time-consuming and labor-intensive conventional methods.


NIR news ◽  
2017 ◽  
Vol 28 (7) ◽  
pp. 16-21
Author(s):  
Xuan Luo ◽  
Akifumi Ikehata ◽  
Kunio Sashida ◽  
Shanji Piao ◽  
Tsutomu Okura ◽  
...  

A major concern for the practical use of NIR spectroscopy is calibration transfer. In this study, different ways of calibration transfer were tried and compared to seek the optimal solution for our developed portable NIR spectrometers, which are designed for rapid diagnosis of bovine anemia due to parasites and are believed to be promising to replace the current time-consuming centrifugation way of measuring Hematocrit value (%) for final diagnosis. Our results show the importance of a robust model during the process of calibration transfer. It is risky to transfer a model which is not robust enough by using standardization algorithm.


2017 ◽  
Vol 25 (5) ◽  
pp. 338-347 ◽  
Author(s):  
Sudarno ◽  
Divo D Silalahi ◽  
Tauvik Risman ◽  
Baiq L Widyastuti ◽  
F Davrieux ◽  
...  

Near infrared spectroscopy calibrations for rapid oil content determination of dried-ground oil palm mesocarp and kernel were developed. Samples were analyzed, one set using the Soxhlet extraction method for reference analysis and the other set scanned by near infrared spectroscopy instrument for calibration. Successful calibrations were obtained with good accuracy and precision for mesocarp and kernel, based on statistical models. Math treatment and scatter correction had significant effects on the fitting of the calibration model. The best obtained calibration models were demonstrated by multiple correlation coefficient (R2), standard error of calibration, standard error of cross validation, coefficient of determination in cross validation (1-VR) and relative predictive deviation of calibration, which respectively were 0.997, 1.21%, 1.23%, 0.997 and 17.89 for mesocarp and 0.952, 0.47%, 0.53%, 0.94 and 4.00 for kernel. The correlations between reference and predicted values for samples in the validation sets were in agreement with high linearity, high ratio performance to deviation of prediction (≥4.00) and low standard error of prediction samples for both samples. The results demonstrated that near infrared spectroscopy can be used as an alternative and reliable technique to estimate the mesocarp and kernel oil contents in dry matter basis accurately and rapidly.


2013 ◽  
Vol 807-809 ◽  
pp. 1978-1983 ◽  
Author(s):  
Cai Xia Xie ◽  
Hai Yan Gong ◽  
Jian Ying Liu ◽  
Jing Wei Lei ◽  
Xiao Yan Duan ◽  
...  

To establish a rapid analytical method for Loganin in Qiju Dihuang Pills (condensed) by Near-infrared Diffuse Reflectance Technique. Collecting NIR spectra by NIR Diffuse Reflectance Spectroscopy, the partial least square calibration model was built. The correlation coefficients (R2) and the root-mean-square error of cross-validation (RMSECV) were 0.99764 and 0.09340, respectively. In the external validation,coefficients of determination (r2) between NIRS and HPLC values was 0.97348,the root-mean-square error of prediction (RMSEP) was 0.08491. The results showed that the method was rapid, accurate, and could be applied to the fast determination of Loganin in Qiju Dihuang Pills (condensed).


Sign in / Sign up

Export Citation Format

Share Document