A Neumann problem for the polyanalytic operator in planar domains with harmonic Green function

2021 ◽  
pp. 1-9
Author(s):  
Mohamed Akel ◽  
Heinrich Begehr ◽  
Alip Mohammed
2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Heinrich Begehr ◽  
Bibinur Shupeyeva

AbstractThere are three basic boundary value problems for the inhomogeneous polyanalytic equation in planar domains, the well-posed iterated Schwarz problem, and further two over-determined iterated problems of Dirichlet and Neumann type. These problems are investigated in planar domains having a harmonic Green function. For the Schwarz problem, treated earlier [Ü. Aksoy, H. Begehr, A.O. Çelebi, AV Bitsadze’s observation on bianalytic functions and the Schwarz problem. Complex Var Elliptic Equ 64(8): 1257–1274 (2019)], just a modification is mentioned. While the Dirichlet problem is completely discussed for arbitrary order, the Neumann problem is just handled for order up to three. But a generalization to arbitrary order is likely.


Author(s):  
B. D. Koshanov ◽  
A. Baiarystanov ◽  
M. Daurenkyzy ◽  
S. O. Turymbet

In this paper, a constructive method is given for constructing the Green function of the Dirichlet problem for a biharmonic equation in a multidimensional ball. The need to study boundary value problems for elliptic equations is dictated by numerous practical applications in the theoretical study of the processes of hydrodynamics, electrostatics, mechanics, thermal conductivity, elasticity theory, and quantum physics. The distributions of the potential of the electrostatic field are described using the Poisson equation. When studying the vibrations of thin plates of small deflections, biharmonic equations arise. There are various ways to construct the Green Function of the Dirichlet problem for the Poisson equation. For many types of domains, it is constructed explicitly. And for the Neumann problem in multidimensional domains, the construction of the Green function is an open problem. For the ball, the Green function of the internal and external Neumann problem is constructed explicitly only for the two-dimensional and three-dimensional cases. Finding general correct boundary value problems for differential equations is always an urgent problem. The abstract theory of operator contraction and expansion originates from the work of John von Neumann, in which a method for constructing self-adjoint extensions of a symmetric operator was described and a theory of extension of symmetric operators with finite defect indices was developed in detail. Many problems for partial differential equations lead to operators with infinite defect indices. In the early 80s of the last century, M.O. Otelbaev and his students built an abstract theory that allows us to describe all correct constrictions of a certain maximum operator and separately - all correct extensions of a certain minimum operator, independently of each other, in terms of the inverse operator. In this paper, the correct boundary value problems for the biharmonic operator are described using the Green's function.


2006 ◽  
Vol 6 (4) ◽  
pp. 386-404 ◽  
Author(s):  
Ivan. P. Gavrilyuk ◽  
V.L. Makarov ◽  
V.B. Vasylyk

AbstractWe develop an accurate approximation of the normalized hyperbolic operator sine family generated by a strongly positive operator A in a Banach space X which represents the solution operator for the elliptic boundary value problem. The solution of the corresponding inhomogeneous boundary value problem is found through the solution operator and the Green function. Starting with the Dunford — Cauchy representation for the normalized hyperbolic operator sine family and for the Green function, we then discretize the integrals involved by the exponentially convergent Sinc quadratures involving a short sum of resolvents of A. Our algorithm inherits a two-level parallelism with respect to both the computation of resolvents and the treatment of different values of the spatial variable x ∈ [0, 1].


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongjie Liu ◽  
Xiao Fu ◽  
Liangping Qi

We are concerned with the following nonlinear three-point fractional boundary value problem:D0+αut+λatft,ut=0,0<t<1,u0=0, andu1=βuη, where1<α≤2,0<β<1,0<η<1,D0+αis the standard Riemann-Liouville fractional derivative,at>0is continuous for0≤t≤1, andf≥0is continuous on0,1×0,∞. By using Krasnoesel'skii's fixed-point theorem and the corresponding Green function, we obtain some results for the existence of positive solutions. At the end of this paper, we give an example to illustrate our main results.


Annals of PDE ◽  
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Zonglin Han ◽  
Andrej Zlatoš

Sign in / Sign up

Export Citation Format

Share Document