Assessment of the impact of window screens on indoor thermal comfort and energy efficiency in a naturally ventilated courtyard house

2017 ◽  
Vol 60 (5) ◽  
pp. 382-394 ◽  
Author(s):  
Wael A. Yousef Mousa ◽  
Werner Lang ◽  
Thomas Auer
2017 ◽  
Vol 8 (5) ◽  
pp. 221
Author(s):  
Sugiono Sugiono ◽  
Suluh E. Swara ◽  
Wisnu Wijanarko ◽  
Dwi H. Sulistyarini

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6192
Author(s):  
Madi Kaboré ◽  
Emmanuel Bozonnet ◽  
Patrick Salagnac

We developed and studied key performance indexes and representations of energy simulation heat fluxes to evaluate the performance of the evaporative cooling process as a passive cooling technique for a commercial building typology. These performance indexes, related to indoor thermal comfort, energy consumption and their interactions with their surrounding environments, contribute to understanding the interactions between the urban climate and building for passive cooling integration. We compare the performance indexes for current and future climates (2080), according to the highest emission scenario A2 of the Special Report on Emission Scenario (SRES). Specific building models were adapted with both green roof and wetted roof techniques. The results show that summer thermal discomfort will increase due to climate change and could become as problematic as winter thermal discomfort in a temperate climate. Thanks to evapotranspiration phenomena, the sensible heat contribution of the building to the urban heat island (UHI) is reduced for both current and future climates with a green roof. The performance of the vegetative roof is related to the water content of the substrate. For wetted roofs, the impacts on heat transferred to the surrounding environment are higher for a Mediterranean climate (Marseille), which is warmer and drier than the Paris climate studied (current and future climates). The impact on indoor thermal comfort depends on building insulation, as demonstrated by parametric studies, with higher effects for wetted roofs.


2021 ◽  
Author(s):  
Chafik Murad

Cantilevered concrete balcony slabs are being investigated in high-rise (MURBs) to control thermal bridging in terms of energy efficiency and thermal comfort where the use of a proprietary thermal break was the prime application as a solution to improving energy efficiency. This MRP investigated the thermal performance of using a lower U-value framed glazing condition and an insulated curb condition and developed assemblies in scenarios that were simulated in THERM, and focused on the technical performance of thermal comfort benefit of insulated curb condition of 12.7 mm thick EPS. Concrete surface temperatures were significantly increased in values from 4.8 °C to 9.6 °C and from 6.2 °C to 10.0 °C above balcony slab and from 6.7 °C to 10.8 °C below slab when an insulated curb condition was used in conventional scenarios and in a lower U-value framed condition scenario with no proprietary thermal break added. U-values are reduced 10% to 18% for the upper surface of balcony slab and 4% reduction of the overall U-values when an insulated curb condition is incorporated.


Author(s):  
Sobhy Issam ◽  
Brakez Abderrahim ◽  
Brahim Benhamou

Abstract This paper aims at identifying the impact of three retrofit scenarios of a typical single family house on its energy performance and its indoor thermal comfort in several climates. Two of these scenarios are based on the Moroccan Thermal Regulation in Constructions (RTCM) while the third is the one proposed in this study. The climates, which range from group B to group C of the Köppen climate classification. The results show that the proposed renovation scenario allows reducing the heating load by 19-42% and the cooling load by 29-60% depending on the climate. Furthermore, the RTCM retrofit scenario leads to summer overheating in all climates. One of the main reason of this overheating is the insulation of the slab-on-grade floor as this insulation increases the annual heating/cooling energy needs of the house by 6%-10%. Moreover, the cavity wall technique was found to be the best option for external walls, instead of using high thermal insulting material, in the hot climates. The analysis of the energy performance, the thermal comfort indices and the payback periods for each retrofit scenario shows that the proposed scenario presents the best thermal performance, except for the Cold climate where the RTCM scenario is the most favorable.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Wen-Tsai Sung ◽  
Sung-Jung Hsiao ◽  
Jing-An Shih

With the development and progress of technology, people’s requirements for living quality are increasingly higher. This study builds an indoor thermal comfort environmental monitoring system through the Internet of Things (IoT) architecture to explore the thermal comfort of people in indoor environments. Then, the applicable indicators are selected from a series of thermal comfort pointers, and the controllable indoor environmental parameters are analyzed and simulated on MATLAB to obtain the impact on the thermal comfort indicators, which can serve as important data to set up the fuzzy rule base. Next, according to the ISO7730 comfort standard and energy saving, three ways to control thermal comfort are proposed. With Arduino UNO as the development substrate, the sensing nodes for the indoor environment are set up, and the wireless sensing network is configured with ESP8266 to transmit the sensing data to the terminal. Monitored by the C# human-machine interface, the controllable load is controlled by wireless remote mode. Finally, the data is stored in the database for follow-up experimentation and analysis. Through actual measurement experiments, the thermal comfort and energy saving effects, under comfort, general, and energy-saving modes, as proposed in this study, are verified to achieve a balance between thermal comfort and energy saving.


2013 ◽  
Vol 291-294 ◽  
pp. 1752-1755
Author(s):  
Yu Hui Di ◽  
Shan Cong Wang

Under dynamic conditions the impact of indoor wind speed, temperature, humidity on thermal comfort are analyzed,and the dynamic thermal comfort research focuses on changes in wind speed and frequency.Through field testing and calculation,the indicators of PMV and PD are compared under dynamic conditions in the evaluation of thermal comfort and applicability.It is considered that PD is more suitable for evaluation of dynamic thermal comfort.


Sign in / Sign up

Export Citation Format

Share Document