Active control of combustion instabilities using model-based controllers

2003 ◽  
Vol 175 (1) ◽  
pp. 27-53 ◽  
Author(s):  
D. U. Campos-DELGADO ◽  
K. Zhou ◽  
D. Allgood ◽  
S. Acharya
Author(s):  
Aimee S. Morgans ◽  
Ann P. Dowling

Model-based control has been successfully implemented on an atmospheric pressure lean premixed combustion rig. The rig incorporated a pressure transducer in the combustor to provide a sensor measurement, with actuation provided by a fuel valve. Controller design was based on experimental measurement of the open loop transfer function. This was achieved using a valve input signal which was the sum of an identification signal and a control signal from an empirical controller to eliminate the non-linear limit cycle. The transfer function was measured for the main instability occurring at a variety of operating conditions, and was found to be fairly similar in all cases. Using Nyquist and H∞-loop shaping techniques, several robust controllers were designed, based on a mathematical approximation to the measured transfer function. These were implemented experimentally on the rig, and were found to stabilise it under a variety of operating conditions, with a greater reduction in the pressure spectrum than had been achieved by the empirical controller.


Author(s):  
C. E. Johnson ◽  
Y. Neumeier ◽  
M. Neumaier ◽  
B. T. Zinn ◽  
D. D. Darling ◽  
...  

This paper presents the results of an investigation of active control of combustion instabilities in a natural gas, high-pressure, full-scale gas turbine combustor that was retrofitted with an Active Control System (ACS). The combustor test rig simulates the geometry, inlet airflow distribution, and pressurization of a can-type combustor that exhibits dynamic flame instabilities at some off-design operating conditions. Two essential features of the investigated ACS are 1) a real-time mode observer that identified the frequencies, amplitudes and phases of the dominant modes in the pressure signal and 2) a fast response servo valve that can modulate a large portion of the gaseous fuel. Two active control configurations were studied. In the first configuration, the actuator was mounted on one of two premixed fuel stages, and in the second configuration it was mounted on the inlet to the stabilizing diffusion stage. In both configurations, the ACS damped combustion instabilities, attenuating the dominant mode by up to 15dB and reducing the overall broadband noise by 30-40%. NOx emissions were also reduced by approximately 10% when control was applied. Finally, this study demonstrated the importance of having a fast multiple-mode observer when dealing with complex combustion processes with inherently large time delays.


Author(s):  
Ben T. Zinn

This paper reviews the state of the art of active control systems (ACS) for gas turbine combustors. Specifically, it discusses the manner in which ACS can improve the performance of combustors, the architecture of such ACS, and the designs and promising performance of ACS that have been developed to control combustion instabilities, lean blowout and pattern factor. The paper closes with a discussion of research needs, with emphasis on the integration of utilized engine ACS, health monitoring and prognostication systems into a single control system that could survive in the harsh combustor environment.


Author(s):  
D. Shcherbik ◽  
E. Lubarsky ◽  
Y. Neumeier ◽  
B. T. Zinn ◽  
K. McManus ◽  
...  

This paper describes the application of active, open loop, control in effective damping of severe combustion instabilities in a high pressure (i.e., around 520 psi) gas turbine combustor simulator. Active control was applied by harmonic modulation of the fuel injection rate into the combustor. The open-loop active control system consisted of a pressure sensor and a fast response actuating valve. To determine the dependence of the performance of the active control system upon the frequency, the fuel injection modulation frequency was varied between 300 and 420 Hz while the frequency of instability was around 375 Hz. These tests showed that the amplitude of the combustor pressure oscillations strongly depended upon the frequency of the open loop control. In fact, the amplitude of the combustor pressure oscillations varied ten fold over the range of investigated frequencies, indicating that applying the investigated open loop control approach at the appropriate frequency could effectively damp detrimental combustion instabilities. This was confirmed in subsequent tests in which initiation of open loop modulation of the fuel injection rate at a non resonant frequency of 300Hz during unstable operation with peak to peak instability amplitude of 114 psi and a frequency of 375Hz suppressed the instability to a level of 12 psi within approximately 0.2 sec (i.e., 75 periods). Analysis of the time dependence of the spectra of the pressure oscillations during suppression of the instability strongly suggested that the open loop fuel injection rate modulation effectively damped the instability by “breaking up” (or preventing the establishment of) the feedback loop between the reaction rate and combustor oscillations that drove the instability.


2000 ◽  
Vol 16 (3) ◽  
pp. 485-491 ◽  
Author(s):  
Rajendran Mohanraj ◽  
Yedidia Neumeier ◽  
Ben T. Zinn

2000 ◽  
Vol 122 (2) ◽  
pp. 262-268 ◽  
Author(s):  
Stanley S. Sattinger ◽  
Yedidia Neumeier ◽  
Aharon Nabi ◽  
Ben T. Zinn ◽  
David J. Amos ◽  
...  

Described are sub-scale tests that successfully demonstrate active feedback control as a means of suppressing damaging combustion oscillations in natural-gas-fueled, lean-premix combustors. The control approach is to damp the oscillations by suitably modulating an auxiliary flow of fuel injected near the flame. The control system incorporates state observer software that can ascertain the frequency, amplitude, and phase of the dominant modes of combustion oscillation, and a sub-scale fuel flow modulator that responds to frequencies well above 1 kHz. The demonstration was conducted on a test combustor that could sustain acoustically coupled combustion instabilities at preheat and pressurization conditions approaching those of gas-turbine engine operation. With the control system inactive, two separate instabilities occurred with combined amplitudes of pressure oscillations exceeding 70 kPa (10 psi). The active control system produced four-fold overall reduction in these amplitudes. With the exception of an explainable control response limitation at one frequency, this reduction represented a major milestone in the implementation of active control. [S0742-4795(00)00702-X]


Sign in / Sign up

Export Citation Format

Share Document