Numerical Investigation on Performance of Axisymmetric Variable Geometry Scramjet Combustor Equipped with Strut Flame Holder

Author(s):  
Hongchao Qiu ◽  
Junlong Zhang ◽  
Guangjun Feng ◽  
Juntao Chang ◽  
Wen Bao
Author(s):  
Lei Shi ◽  
Xiaowei Liu ◽  
Guoqiang He ◽  
Fei Qin ◽  
Xianggeng Wei ◽  
...  

AbstractNumerical integration simulations were performed on a ready-made central strut-based rocket-based combined-cycle (RBCC) engine operating in the ejector mode during the takeoff regime. The effective principles of various cowl lip positions and shapes on the inlet operation and the overall performance of the entire engine were investigated in detail. Under the static condition, reverse cowl lip rotation in a certain range was found to contribute comprehensive improvement to the RBCC inlet and the entire engine. However, the reverse rotation of the cowl lip contributed very little enhancement of the RBCC inlet under the low subsonic flight regime and induced extremely negative impacts in the high subsonic flight regime, especially in terms of a significant increase in the drag of the inlet. Changes to the cowl lip shape provided little improvement to the overall performance of the RBCC engine, merely shifting the location of the leeward area inside the RBCC inlet, as well as the flow separation and eddy, but not relieving or eliminating those phenomena. The results of this study indicate that proper cowl lip rotation offers an efficient variable geometry scheme for a RBCC inlet in the takeoff regime.


2021 ◽  
Author(s):  
Sajal Katare ◽  
Nagendra P. Yadav

Abstract This paper focuses the computational study of non-premixed combustion in a scramjet combustor. The wedge shaped strut injector was used in the combustion process. In order to investigate the flame holding mechanism of the wedge shaped strut in supersonic flow, the two-dimensional coupled implicit RANS equations, the standard k-ε turbulence model and the finite-rate/eddy-dissipation reaction model are introduced to simulate the flow field of the hydrogen fueled scramjet combustor with a strut flame holder under different conditions. The static pressure of the case under the engine ignition condition is much higher than that of the case under the cold flow condition. The reflection of shock waves improves the mixing of hydrogen with the stream of inlet air and thus increases combustion efficiency. The mass flow rate of air is optimized for the best performance of engine.


2015 ◽  
Vol 766-767 ◽  
pp. 1044-1049

Removed due to plagiarism. The original was published as: Numerical Investigation of Inlet-Combustor Interactions for a Scramjet Hydrogen-Fueled Engine at a Flight Mach number of 8. Authors: Edder Rabadan and Bernhard Weigand 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France, 2012. Paper ID AIAA-2012-5926, DOI: 10.2514/6.2012-5926


2013 ◽  
Vol 29 (5) ◽  
pp. 1041-1051 ◽  
Author(s):  
Xinyan Pei ◽  
Zhiwen Wu ◽  
Zhijun Wei ◽  
Junyi Liu

Sign in / Sign up

Export Citation Format

Share Document