Reduced Pressure Effect on The Centerline Plume Temperatures of Elevated n-Heptane Fires in an Aircraft Cargo Compartment

Author(s):  
Jie Wang ◽  
Gongyousheng Cui ◽  
Kaihua Lu ◽  
Xuepeng Jiang
2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1261-1272
Author(s):  
Blanka Jakubowska ◽  
Dariusz Mikielewicz

In the paper are presented the results using the authors own model to predict heat transfer coefficient during flow boiling. The model has been tested against a large selection of experimental data to investigate the sensitivity of the in-house developed model. In the work are presented the results of calculations obtained using the semi-empirical model on selected experimental flow boiling data of the refrigerants: R134a, R1234yf, R600a, R290, NH3, CO2, R236fa, R245fa, R152a, and HFE7000. In the present study, particular attention was focused on the influence of reduced pressure on the predictions of the theoretical model. The main purpose of this paper is to show the effect of the reduced pressure on the predictions of heat transfer during flow boiling.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-729-C8-734
Author(s):  
A.I. Lotkov ◽  
V.P. Lapshin ◽  
V.A. Goncharova ◽  
H.V Chernysheva ◽  
V.N. Grishkov ◽  
...  

1982 ◽  
Vol 43 (C5) ◽  
pp. C5-93-C5-100 ◽  
Author(s):  
M. Onuki ◽  
A. Nishikawa

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-275-C8-276
Author(s):  
H. Yoshida ◽  
T. Komatsu ◽  
T. Kaneko ◽  
S. Abe ◽  
K. Kamigaki

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1281-C8-1282
Author(s):  
H. Tange ◽  
Y. Tanaka ◽  
K. Shirakawa

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Catherine M. Febria ◽  
Maggie Bayfield ◽  
Kathryn E. Collins ◽  
Hayley S. Devlin ◽  
Brandon C. Goeller ◽  
...  

In Aotearoa New Zealand, agricultural land-use intensification and decline in freshwater ecosystem integrity pose complex challenges for science and society. Despite riparian management programmes across the country, there is frustration over a lack in widespread uptake, upfront financial costs, possible loss in income, obstructive legislation and delays in ecological recovery. Thus, social, economic and institutional barriers exist when implementing and assessing agricultural freshwater restoration. Partnerships are essential to overcome such barriers by identifying and promoting co-benefits that result in amplifying individual efforts among stakeholder groups into coordinated, large-scale change. Here, we describe how initial progress by a sole farming family at the Silverstream in the Canterbury region, South Island, New Zealand, was used as a catalyst for change by the Canterbury Waterway Rehabilitation Experiment, a university-led restoration research project. Partners included farmers, researchers, government, industry, treaty partners (Indigenous rights-holders) and practitioners. Local capacity and capability was strengthened with practitioner groups, schools and the wider community. With partnerships in place, co-benefits included lowered costs involved with large-scale actions (e.g., earth moving), reduced pressure on individual farmers to undertake large-scale change (e.g., increased participation and engagement), while also legitimising the social contracts for farmers, scientists, government and industry to engage in farming and freshwater management. We describe contributions and benefits generated from the project and describe iterative actions that together built trust, leveraged and aligned opportunities. These actions were scaled from a single farm to multiple catchments nationally.


Author(s):  
N. A. Bulychev

In this paper, the plasma discharge in a high-pressure fluid stream in order to produce gaseous hydrogen was studied. Methods and equipment have been developed for the excitation of a plasma discharge in a stream of liquid medium. The fluid flow under excessive pressure is directed to a hydrodynamic emitter located at the reactor inlet where a supersonic two-phase vapor-liquid flow under reduced pressure is formed in the liquid due to the pressure drop and decrease in the flow enthalpy. Electrodes are located in the reactor where an electric field is created using an external power source (the strength of the field exceeds the breakdown threshold of this two-phase medium) leading to theinitiation of a low-temperature glow quasi-stationary plasma discharge.A theoretical estimation of the parameters of this type of discharge has been carried out. It is shown that the lowtemperature plasma initiated under the flow conditions of a liquid-phase medium in the discharge gap between the electrodes can effectively decompose the hydrogen-containing molecules of organic compounds in a liquid with the formation of gaseous products where the content of hydrogen is more than 90%. In the process simulation, theoretical calculations of the voltage and discharge current were also made which are in good agreement with the experimental data. The reaction unit used in the experiments was of a volume of 50 ml and reaction capacity appeared to be about 1.5 liters of hydrogen per minute when using a mixture of oxygen-containing organic compounds as a raw material. During their decomposition in plasma, solid-phase products are also formed in insignificant amounts: carbon nanoparticles and oxide nanoparticles of discharge electrode materials.


Sign in / Sign up

Export Citation Format

Share Document