Change of Organic Carbon Content and Its Fractions in Black Soil under Long‐Term Application of Chemical Fertilizers and Recycled Organic Manure

2006 ◽  
Vol 37 (7-8) ◽  
pp. 1127-1137 ◽  
Author(s):  
Xiaozeng Han ◽  
Shouyu Wang ◽  
Peter L. M. Veneman ◽  
Baoshan Xing
2014 ◽  
Vol 1073-1076 ◽  
pp. 1743-1750
Author(s):  
Wei Guo ◽  
Zhong Qing Zhang ◽  
Jin Hua Liu ◽  
Ping Zhu ◽  
Jing Min Yang

Long-term experiment of Gongzhuling base for the study through three treatments(1)NPK: NPK fertilizer; (2)N165M: Manure and NPK fertilizer; (3)1.5M+NPK: 1.5Manure and NPK fertilizer, used DSSAT-Century soil model to study the long-term effects of different fertilizer treatments on soil organic carbon, total nitrogen content and the laws of growth and decline. The results show that: long-term application of nitrogen fertilizer can significantly improve crop yields compare with NPK.. Corn production is also affected by climatic conditions, especially in drought years with less precipitation. Larger impact of organic manure on soil organic carbon (SOC)and total nitrogen, SOC content obtained in descending order of 1.5M + N165> N165> N0 by Century model simulation. Soil organic carbon content and nitrogen content has a certain relevance, and the trend is consistent. Organic manure and inorganic fertilizer can significantly reduce soil inorganic nitrogen content and reduce the risk of nitrogen leaching. Through model simulations C / N ratio could be explained: C / N increases indicated an increase of organic carbon faster than organic nitrogen in soil, and changes of soil chronic library SOM2 determined organic carbon content. Therefore we should pay attention to organic manure carbon return level, vigorously promote the use of farmyard manure to improve soil nutrient content.


2019 ◽  
Vol 24 (1) ◽  
pp. 25
Author(s):  
Oyeyiola Yetunde Bunmi ◽  
Omueti John Ajayi

Chemical fertilizers (CF) are the major input on arable farms in Nigeria. Current increasing rate of nutrient depletion in CF treated soils calls for the need to study their reactions in soils. To achieve this, three CF based treatments, namely NPK 15:15:15 applied at 40 kg P2O5 ha-1, Urea applied at 20 kg N ha-1  mixed with Single superphosphate at 40 kg P2O5 ha-1, and single superphosphate at 40 kg P2O5 ha-1  mixed with Gliricidia sepium leaves at 20 kg N ha-1  were studied. Sole lime (CaCO3) at 1 Mg ha-1 and a plot that received no amendment were compared. Cowpea was grown for two consecutive cropping seasons in 2012 and 2013 on the treated fields. The results indicated that CF reduced soil pH from initial 4.8 to 4.0. The NPK 15:15:15 fertilizer was the most severe of the CF tested, removing up to 133% alkalinity from the soil relative to lime. The NPK 15:15:15 reduced calcium saturation (from 25% to 21%) and magnesium saturation (from 12% to 8.3%) and increased acidity saturation (from 53% to 66%) with significant reductions in organic carbon content (from 13.2 g kg-1 to 11.0 g kg-1). Precaution including co-application of CF with organic materials such as Gliricidia sepium leaves can benefit for the soils.


2005 ◽  
Vol 20 (5) ◽  
pp. 519-527 ◽  
Author(s):  
Xiaoyong Cui ◽  
Yanfen Wang ◽  
Haishan Niu ◽  
Jing Wu ◽  
Shiping Wang ◽  
...  

2012 ◽  
Vol 40 ◽  
pp. 18-27 ◽  
Author(s):  
Giacomo De Sanctis ◽  
Pier Paolo Roggero ◽  
Giovanna Seddaiu ◽  
Roberto Orsini ◽  
Cheryl H. Porter ◽  
...  

2014 ◽  
Vol 60 (4) ◽  
pp. 142-148
Author(s):  
Lukáš Hlisnikovský ◽  
Eva Kunzová

Abstract Soil is the fundamental element in agriculture and is affected in a variety of ways. Besides other things, the long-term application of mineral and organic fertilisers can significantly influence the topsoil pool of nutrients, organic carbon content and pH. Within the scope of longterm field experiments in Praha-Ruzyně, we evaluated the effect of six fertiliser treatments - unfertilised Control, farmyard manure (FYM), cattle slurry (CAT), cattle slurry amended with straw from previous cereals (CAT+STR), mineral fertiliser (NPK) and NPK amended with FYM (NPK+FYM) on a topsoil pool of nutrient content, organic carbon content (Cox) and pH between the years 2001 and 2012. In the selected period, the fertiliser treatment did not influence the N and Cox content (ranging from 0.126% to 0.143%). Phosphorus and potassium were significantly higher in the NPK+FYM treatment (109.82 and 279.27 mg/kg, respectively), while calcium and magnesium were significantly lower in the NPK treatment (2,973 and 134.95 mg/kg, respectively). Application of mineral fertilisers significantly decreased the value of pH, influencing the Ca and Mg topsoil concentrations. Organic fertilisers cannot provide a sustainable amount of nutrients to generate high yields in a short time, but release their nutrients slowly and the range of nutrients is wider. Mineral fertilisers, if not amended with organic fertilisers, can provide huge doses of nutrients, which can be quickly reused for high yields, but negatively influence the pH value, resulting in a decrease in the pool of Ca and Mg.


Sign in / Sign up

Export Citation Format

Share Document