A rapid method to determine cation exchange capacity and exchangeable bases in calcareous, gypsiferous, saline and sodic soils

1987 ◽  
Vol 18 (9) ◽  
pp. 911-932 ◽  
Author(s):  
L.Th. Begheyn
1976 ◽  
Vol 56 (3) ◽  
pp. 213-221 ◽  
Author(s):  
Y. A. MARTEL ◽  
M. R. LAVERDIERE

The objectives of this work were (1) to determine the relation existing between the organic matter contents of Ap horizons and their respective soil Orders, (Gleysolic and Podzolic), texture, pH and geographic locations in the different thermal regions of Quebec and (2) to determine the role of organic matter and soil texture on the cation exchange properties of the same Ap horizons coming from soils used for forage crops in Quebec. The cation-exchange capacity (CEC), the exchangeable bases and acidity were determined by using 1 N NH4OAC – pH 7. The results showed a variation in the carbon content ranging from 1.4 to 6.9%. The heat units accumulated in each region and the clay contents were correlated with the percentage of carbon and nitrogen. Soil pH and soil Orders (Gleysolic vs. Podzolic) did not seem to affect the organic matter content. The cation-exchange capacity (CEC) ranged from 10.6 to 42.6 meq/100 g soil; 40% of this was attributable to carbon and 32% to clay contents. Simple and multiple regression equations showed that carbon was correlated with the exchangeable acidity, while clay was related to the exchangeable bases. The CEC of organic matter and clay were respectively 161 ± 45 meq/100 g organic matter and 29 ± 6 meq/100 g clay. These values, lower than for Western Canada, reflected the nature of the organic matter that is less developed in Eastern Canada than in the Chernozemic soils; they also showed the effect of the predominant illite mineral found in the clay fractions compared to montmorillonite in Western Canada.


2019 ◽  
Vol 70 (2) ◽  
pp. 147-157
Author(s):  
Zygmunt Brogowski ◽  
Józef Chojnicki

Abstract The aim of the paper was to investigate the sorption properties of granulometric fractions separated from the genetic horizons of arable Haplic Cambisol developed from boulder loams of the Middle-Polish (Riss) Glaciation, Wartanian Stadial (central Poland). Separation of granulometric fractions was made with application of the Atterberg method without the use of centrifuging and dispersing agents. The cation exchange capacity average value in cmol(+)kg−1 and % contribution in particular fractions reached: 1–0.1 mm – 2.1 (1.6%), 0.1–0.05 mm – 5.5 (4.0%), 0.05–0.02 mm – 8.5 (6.1%), 0.02–0.01 mm – 13.0 (10.1%), 0.01–0.005 mm – 16.1 (12.8%), 0.005–0.002 mm – 28.6 (20.5%) and fraction <0.002 mm – 48.7 (44.9%). Leaching of the total exchangeable bases was the largest in the 0.1–0.05 mm fraction and decreased successively with decreasing grain diameter. Sorption properties of the tested soil determine its high agricultural value and buffer properties. The cation exchange capacity of the recognised granulometric fractions successively increased with decrease of their diameter while leaching process intensity in individual fractions decreased gradually as their dimensions decreased. Calcium was the most leached cation, followed by magnesium and sodium, whereas potassium was not leached at all. Significant increase of the cation exchange capacity in fractions from carbonate horizons was mostly caused by the increased contribution of calcium, which could be released from carbonates during extraction of bases.


Author(s):  
Dalil Adoulko ◽  
Simon Djakba Basga ◽  
Rigobert Tchameni ◽  
Jean Pierre Nguetnkam

The present study aims at assessing the fertilizing potential of basalts on impoverished oxisoils from Ngaoundéré (Adamawa, Cameroon). This specifically involves the application of finely ground basalts on impoverished oxisoils and monitoring changes in physicochemical properties during six months. An experimental design which consisted in a randomized complete block design is constituted of three series of four treatments each one: the control (ST), the control soil mixed with 100 g of finely ground basalt (T0 + BA_10), the control soil mixed with 200 g of finely ground basalt (T0 + BA_20), the control soil mixed with 300 g of finely ground basalt (T0 + BA_30). Each treatment was replicated ten times in every serie. The control treatment is only soils of Ng, collected at the top soil and without any basalt application. They are clayey, acid and display an average CEC. The basalt is rich in silica (47.52%), Calcium (8.22%), Magnesium (4.03%), sodium (4.01%), potassium (2.42%) and displays average content in alumina (16.54%) and iron (11.1%). The experiment was carried out in pots, and the incubated soil samples were analyzed after 0, 1, 2, 4 and 6 months. The analyzes mainly focused on the physicochemical parameters (Grain size analysis, pH, Cation exchange capacity (CEC), the sum of exchangeable bases (SBE) and the saturation rate (V). Obtained results indicated that the application of basalt greatly improved the chemical properties of oxisoils from Ngaoundéré: the pH changes from acidic (5.5) to weakly acidic (6.5); the saturation rate, as well as the sum of exchangeable bases and the cation exchange capacity increased. Physicochemical properties of the soil are closely accompanied by an increase in fertility. It appears that 10 and 20% treatments are the most efficient treatments. Thus, the basalts from Manwi can be recommended as petrofertilizer to improve the chemical properties of impoverished soils and especially for plants requiring alkalis and alkaline earth.


2008 ◽  
Vol 53 (No. 11) ◽  
pp. 505-515 ◽  
Author(s):  
I. Kuneš ◽  
V. Balcar ◽  
D. Zahradník

The objective of the study was to evaluate the growth potential of Carpathian birch (<I>Betula carpatica</I> W. et K.) at an environmentally harsh mountain site and a response of this species to altered soil chemistry after dolomitic limestone and basalt grit applications. The Carpathian birch proved to be a suitable species for the replanting of extreme acidic mountain sites. This birch shows a low mortality rate, grows well in the clear-felled patches and soon forms a cover which is necessary for the reintroducing of more sensitive tree species. The application of dolomitic limestone and basalt grit resulted in the slower growth of Carpathian birch plantations. Liming raised soil reaction, sum of exchangeable bases, base saturation, cation exchange capacity and reduced exchangeable Al content. On the other hand, liming decreased an amount of oxidizable soil organic matter and negatively affected soil N, exchangeable P and K. Basalt grit increased exchangeable P and K contents and raised soil reaction, however only slightly. The influence of basalt grit on the sum of exchangeable bases, base saturation and cation exchange capacity was also less pronounced compared to liming. Basalt grit elevated the proportion of exchangeable aluminium and reduced the content of soil N.


Sign in / Sign up

Export Citation Format

Share Document