grain diameter
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 38 (2) ◽  
pp. 25-35
Author(s):  
Souradeep Mukherjee ◽  
Dr. A. Yugandhara Rao

Surficial sediment transportation studies carried out in the beach zone of Bendi-Baruva mineral sand deposit show that sand grains are transported by wind (saltation and suspension) beyond the high water line. The sand population of the study area contains heavy mineral sands (~20%) like ilmenite, garnet and sillimanite which covers 95% of the heavy mineral distribution with subordinate amounts of monazite, rutile, and zircon whereas light mineral sands (~80%) contain mostly quartz. Due to the sorted nature of these beach and dune sands the whole spectra falls within a specific range of grain size which shows a bi-modal distribution, primary mode at 0.025cm and secondary at 0.015cm. Due to this variation in density and grain size, mass of these sand particles vary resulting in differential transportation in any energy regime. In the study area, on the beach near the frontal dunes, surficial concentration of garnet grains are observed in patches having an average thickness 0.2cm i.e. around ten times of the dominant grain diameter. This surficial enrichment of garnet grains resting on a semi-uniform sand surface is the result of differential transportation of the dominant mineral grains. As more than 80% of the grain size population show a dominant grain size of 0.025cm, the wind flow parameters for the whole population is standardized with mean grain diameter (D) of 0.025cm. Mass of dominant individual minerals arrived from the grain counting technique was tallied with the theoretical mass considering spherical shape of the grains indicates a difference of mass to be within 5%. For ease of calculation and generalization the grains were considered to be spherical and their theoretical masses were taken into consideration in calculations. Considering the whole spectra of mineralogical distribution, a theoretical mass group distribution for dominant different minerals of different dominant grain sizes were formulated and total six mass groups were identified. Because quartz (~80%), ilmenite, sillimanite and garnet (together ~20%) are the most abundant, their positions were identified specifically in the theoretical mass groups and only these are considered for further discussion. To analyse wind velocity and pressure at different heights from the surface, a sediment trap was fabricated using piezo-electric sensors. A tail was attached to orient the device parallel to the wind flow so that the piezo surfaces always face the wind flow at 900 angle. The device records pressure data and converts those into voltage. Using the velocity data, macroscopic physical quantities of aeolian transportation were calculated for the study area, which empirically show the effect of mass in differential transportation of the dominant minerals that gives rise to these surficial garnet patches.


2021 ◽  
Author(s):  
Оксана Клименко ◽  

The purpose of this study was to determine the heritability of certain traits under low temperatures both at the stage of early plant development and at the haploid level, while identifying potentially stress resistant and productive hybrids. 14 simple hybrids of the first generation were used as the initial materi-al. The variability of signs of early development of plants and male gametophyte under low temperatures was evaluated. The coefficients of heritability of maternal and paternal genotypes under stressful condi-tions are calculated. A reliable dependence of the variability of the "pollen grain diameter" trait on the interaction of parental genotypes with a stress factor is shown. Hybrids Mo17xN6, Mo17xW23, A285xRf7, XL12xN6, XL12xP101 were the best in terms of the characteristics studied in the experiment.


2021 ◽  
pp. 1-32
Author(s):  
Steven J Lorenz ◽  
Farshid Sadeghi ◽  
Hitesh K Trivedi ◽  
Mathew S Kirsch ◽  
Chinpei Wang

Abstract This paper presents a finite element (FE) model to investigate the effect of prior austenite grain refinement on rolling contact fatigue (RCF). RCF life was determined using continuum damage mechanics (CDM), which simulated material deterioration as a function of cycle. CDM calculations in this investigation considered the subsurface shear reversal to be responsible for RCF failure. To establish the CDM critical parameters torsion stress-life data from open literature of three different grain sizes for the same material was used. It was observed from the torsion S-N data that the resistance stress exhibits a linear relationship with grain diameter. As grain diameter was refined, the resistance stress increased. The damage rate exponent displayed no relation to grain diameter; hence, the average value from the three torsion S-N curves was used in this investigation. In order to assess the effect of grain refinement on RCF life, a series of unique material microstructures were constructed using the Voronoi tessellation process at eight mean grain diameters. FE simulations were devised at three contact pressures per grain size. The RCF results at the eight grain diameters indicate that fatigue performance is improved exponentially with finer grain diameter. The observed life improvements from the RCF simulations resulting from grain refinement exhibit good corroboration with existing experimental results found in open literature. A single predictive fatigue life equation was constructed from this investigation's RCF simulations to evaluate the stochastic RCF performance, given grain diameter and contact pressure, of non-conformal contacts.


Author(s):  
Kiyoumars Roushangar ◽  
Saman Shahnazi

Abstract Ubiquitous flow bedforms such as ripples in rivers and coastal environments can affect transport conditions as they constitute the bed roughness elements. The roughness coefficient needs to be adequately quantified owing to its significant influence on the performance of hydraulic structures and river management. This work intended to evaluate the sensitivity and robustness of three machine learning (ML) methods, namely, Gaussian process regression (GPR), artificial neural network (ANN), and support vector machine (SVM) for the prediction of the Manning's roughness coefficient of channels with ripple bedforms. To this end, 840 experimental data points considering various hydraulic conditions were prepared. According to the obtained results, GPR was found to accurately predict the Manning's coefficient with input parameters of Reynolds number (Re), depth to width ratio (y/b), the ratio of the hydraulic radius to the median grain diameter (R/D50), and grain Froude number (). Moreover, sensitivity analysis was implemented with proposed ML approaches which indicated that the ratio of the hydraulic radius to the median grain diameter has a considerable role in modeling the Manning's coefficient in channels with ripple bedforms.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1047
Author(s):  
Lianpu Zhou ◽  
Chundong Zhu ◽  
Rongfei Ma ◽  
Zihao Wei

With the aim to investigate the effect of parameters and the quenching process on the joint microstructure and mechanical properties of hot stamping steel by laser welding, BR1500HS boron steel was welded by wire-filling laser welding with ER70-G welding wire under different parameters. The welded specimens were heated to 900 °C and held for 5 min before water quenching. A universal material test machine, optical microscope, Vickers hardness tester, scanning electron microscope, and electron backscatter diffraction (EBSD) were used to characterize. The results show that the heat input should be greater than 1040 J/cm and the optimal wire-feeding speed is between 160 cm/min and 180 cm/min. The tensile strength of the quenched joint can reach greater than 1601.9 MPa at compatible parameters. More retained austenite distributes in the fusion zone (FZ) and fine grain zone (FGZ) than the coarse grain zone (CGZ) before quenching. However, the retained austenite in FZ and heat-affected zone (HAZ) decreases clearly and distributes uniformly after quenching. The grain diameter in FZ before quenching is not uniform and there are some coarse grains with the diameter greater than 40 μm. After quenching, the grains are refined and grain diameter is more uniform in the joint. With the increase in heat input, the microhardness of FZ and HAZ before quenching decreases from 500 HV to 450 HV. However, if the wire-feeding speed increases, the microhardness of FZ and HAZ before quenching increases from 450 HV to 500 HV. After quenching, the joint microhardness of all samples is between 450 HV and 550 HV. The fracture morphology of the joint before quenching consists of a large number of dimples and little river patterns. After quenching, the fracture morphology consists of a large amount of river patterns and cleavage facets due to the generation of martensite.


Author(s):  
Lianpu Zhou ◽  
Chundong Zhu ◽  
Rongfei Ma ◽  
Zihao Wei

With the aim to investigate the effect of parameter and quenching process on the joint of hot stamping steel by laser welding, the BR1500HS boron steel was welded by filling-wire laser welding with ER70-G welding wire under different parameters. The welded specimens were heated to 900℃ and held for 5min before water quenching. The universal material test machine, Optical micro-scope, Vickers hardness tester, scanning electron microscope and electron backscatter diffraction (EBSD) were used to characterize. The results showed that the macroscopic morphology of fusion zone (FZ) becomes from funnelform to hyperbolic curve shape when heat input increases and from hyperbolic curve shape to funnelform when wire-feed speed increases. The strength after quenching is more than 1557Mpa at heat input of 1040J/cm, wire feeding speed of 1.6m/min~1.8m/min and welding speed of 1.5m/min. EBSD test showed that the FZ and fine grain zone (FGZ) have more retained austenite (RA) than coarse grain zone (CGZ) before quenching and RA in FZ and heat affect zone (HAZ) decreased and distributed uniformed after quenching. The grain diameter in FZ distribute unevenly, with the maximum grain diameter larger than 40μm before quenching. After quenching, the grain diameter of FZ, HAZ and BM is more even and coarse grains in the FZ was refined. Before quenching, the microhardness of FZ and HAZ is of 450HV~500HV at different heat input and wire-feed speed and all region of joint keeps at 450HV~550HV after quenching. Most dimple and little river pattern in the joint fracture mor-phology before quenching indicates a well plasticity and most cleavage facet is observed after quenching due to the joint combine with martensite.


This chapter devoted to matching the data with mathematical expressions. Here the functions using fitting by polynomial and non-polynomial expressions is represented by examples from the mechanics and tribology (M&T) fields. The Basic Fitting tool and examples of its use are described. Single and multivariate fitting through optimization are discussed. Application examples are demonstrate the curve fitting for the following data: fuel efficiency-velocity, yield strength-grain diameter, friction coefficient-time, and machine diagnostic parameter.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yanfeng Li ◽  
Cuirong Liu ◽  
Zhibing Chu ◽  
Wei Li ◽  
Zhisheng Wu ◽  
...  

Based on the thermodynamic conversion mechanism and energy transition principle, a three-dimensional cellular automata model of grain growth is established from the aspects of grain orientation, grain size distribution, grain growth kinetics, and grain topology. Also, the effect of temperature on the three-dimensional grain growth process of AZ31 magnesium alloy is analyzed. The results show that the normal growth of three-dimensional grains satisfies the Aboav-weaire equation, the average number of grain planes is between 12 and 14 at 420°C and 2000 CAS, and the maximum number of grain planes is more than 40. Grains of different sizes are distributed normally at different times, most of which are grains with the ratio of grain diameter to average grain diameter R/Rm ≈ 1.0, which meets the minimum energy criterion of grain evolution. The grain of AZ31 magnesium alloy increases in size with the increase of temperature, and the number of grains decreases with the increase in time. The angle between the two-dimensional slices of three-dimensional grains is approximately 120°, which is consistent with that of the traditional two-dimensional cellular automata. The relative error of grain size before and after heat preservation is in the range of 0.1–0.6 μm, which indicates that the 3D cellular automata can accurately simulate the heat preservation process of AZ31 magnesium alloy.


Author(s):  
M. I. Dvornik ◽  
E. A. Mikhailenko

The study covers the possibility of WC-15Co ultrafine cemented carbide production from powder obtained by spark erosion (SE) of VK15 cemented carbide waste in water. As a result of SE in an oxygen-containing liquid (H2O), the carbon content in the resulting powder decreases from 5.3 to 2.3 %. When the powder is heated to 900 °C in vacuum, the carbon content decreases to 0.2 % due to the presence of oxygen. The powder obtained consists of WC, W2C and Co phases. Particles have a dendritic structure consisting of newly formed tungsten-containing grains and cobalt interlayers. The controlled removal of oxygen and carbon replenishment in the resulting powder were carried out by heating in the CO atmosphere to t = = 900 °C. The processed powder has a required phase composition (WC + Co) and carbon content (5.3 %). Particles retain their spherical shape after carbon replenishment. WC grains in particles become plate-shaped with the space between them filled with cobalt. The average grain diameter is smaller than in the initial alloy. The vacuum sintering of the resulting powder at 1390 °C made it possible to obtain WC–15Co ultrafine-grained cemented carbide with an average WC grain diameter of 0.44 μm. It is several times smaller than the average grain diameter in the initial alloy (1.8 μm). Most grains retain their plate shape. The resulting alloy combines high hardness (1620 HV), increased fracture toughness (13.2 MPa·m1/2) and strength (1920 MPa) due to its fine-grain structure and 15 % cobalt content. In terms of the set of its properties, this alloy is not inferior to analogues obtained by other methods.


2020 ◽  
Vol 20 (3) ◽  
pp. 225-234
Author(s):  
K. A. Molokov ◽  
V. V. Novikov ◽  
A. P. German

Introduction. Microdefects and zones with stress concentration in welded joints cause fatigue macrocracks. Such damage is potentially dangerous, especially if the fatigue life of the structure is almost exhausted. In this case, the crack size is close to the critical value, and it is crucial to determine its length. The paper considers the development of an engineering analytical model for assessing the critical crack length and endurance limit of welded joints with the formed grain in the structure of ferrite-pearlitic steels after welding. Materials and Methods. The theory and methods of fracture mechanics at the mesoscale are used. A simple analytical dependence is obtained, which provides determining the critical dimensions of a macrocrack for ferrite-pearlite steels without using the Griffiths formula. . The calculation results of the critical crack lengths of various steels depending on their yield strength are presented. An analytical dependence of the endurance limit calculation for the most dangerous symmetric loading cycle, according to the standard set of mechanical characteristics and the average grain diameter of ferrite-pearlite steel, is presented. Results. Structural deformation analysis of the crack propagation process has been performed. On its basis, an engineering technique for assessing the endurance limit is developed. A mathematical model that enables to calculate the endurance limit and the critical crack length in the components of welded assemblies of large-sized facilities, considering periodic loads of a symmetrical cycle, is developed. Using this model, it is possible to estimate the degree of metal sensitivity to the original characteristics (yield stress, Poisson's ratio, grain diameter, relative constriction, Young's modulus, power-law hardening coefficient, etc.).Discussion and Conclusion. Under stresses corresponding to the steel endurance limit, the critical crack opening rates of the tip and edges approach each other. Energetically, this moment approximately corresponds to the transition of the crack to an unstable state. The accumulation of one-sided plastic deformations causes the limiting state of plasticity of the region adjacent to the crack tip and its avalanche-like or sharply accelerated motion. This critical area is interrelated with the grain diameter of the material, the characteristic of critical plasticity and the critical opening at the crack tip at the fatigue limit. The proposed analytical dependences can be used to assess the residual life and the fatigue limit of welded structures, the influence of various factors on the fatigue limit of welded joints of ferrite-pearlitic steels used in mechanical engineering, shipbuilding, pipeline transport, etc


Sign in / Sign up

Export Citation Format

Share Document