scholarly journals The Influence of Basalt Powder on the Physicochemical Properties of Impoverished Oxisoils from Ngaoundéré (Adamawa - Cameroon)

Author(s):  
Dalil Adoulko ◽  
Simon Djakba Basga ◽  
Rigobert Tchameni ◽  
Jean Pierre Nguetnkam

The present study aims at assessing the fertilizing potential of basalts on impoverished oxisoils from Ngaoundéré (Adamawa, Cameroon). This specifically involves the application of finely ground basalts on impoverished oxisoils and monitoring changes in physicochemical properties during six months. An experimental design which consisted in a randomized complete block design is constituted of three series of four treatments each one: the control (ST), the control soil mixed with 100 g of finely ground basalt (T0 + BA_10), the control soil mixed with 200 g of finely ground basalt (T0 + BA_20), the control soil mixed with 300 g of finely ground basalt (T0 + BA_30). Each treatment was replicated ten times in every serie. The control treatment is only soils of Ng, collected at the top soil and without any basalt application. They are clayey, acid and display an average CEC. The basalt is rich in silica (47.52%), Calcium (8.22%), Magnesium (4.03%), sodium (4.01%), potassium (2.42%) and displays average content in alumina (16.54%) and iron (11.1%). The experiment was carried out in pots, and the incubated soil samples were analyzed after 0, 1, 2, 4 and 6 months. The analyzes mainly focused on the physicochemical parameters (Grain size analysis, pH, Cation exchange capacity (CEC), the sum of exchangeable bases (SBE) and the saturation rate (V). Obtained results indicated that the application of basalt greatly improved the chemical properties of oxisoils from Ngaoundéré: the pH changes from acidic (5.5) to weakly acidic (6.5); the saturation rate, as well as the sum of exchangeable bases and the cation exchange capacity increased. Physicochemical properties of the soil are closely accompanied by an increase in fertility. It appears that 10 and 20% treatments are the most efficient treatments. Thus, the basalts from Manwi can be recommended as petrofertilizer to improve the chemical properties of impoverished soils and especially for plants requiring alkalis and alkaline earth.

Author(s):  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Altina L. Nascimento ◽  
Luiz A. Fernandes ◽  
Natália N. de Lima ◽  
...  

ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L.), variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca) and magnesium (Mg) silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1) and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis). Soil organic matter (OM), pH, sum of bases (SB), effective cation exchange capacity (CEC(t)), total cation exchange capacity (CEC(T)), base saturation (V%) and potential acidity (H + Al) were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


Clay Minerals ◽  
2013 ◽  
Vol 48 (2) ◽  
pp. 343-361 ◽  
Author(s):  
M. Valter ◽  
M. Plötze

AbstractBentonite is a potential material for use in the engineered barrier of radioactive waste repositories because of its low hydraulic permeability, self-sealing capability and retention capacity. It is expected that bentonite would react at the elevated temperatures accompanying the radioactive decay in the nuclear waste. The presented study was started in order to improve understanding of the coupled influence of temperature and (pore) water on the physicochemical and mineralogical properties of bentonite during thermal treatment under near-field relevant conditions. Granular Na-bentonite MX-80 was differently saturated (Sr = 1–0.05) and stored at different temperatures (50–150°C) in a closed system. Upon dismantling after different periods of time (3 to 18 months), mineralogical characteristics, cation exchange capacity and content of leachable cations, as well as physicochemical properties such as surface area and water adsorption were investigated.The results showed a high mineralogical stability. A slight conversion from the sodium to an earth alkali form of the bentonite was observed. However, considerable changes in the physicochemical properties of the bentonite were observed, particularly by treatment above the critical temperature of 120°C. The cation exchange capacity decreased during heating at 150°C by approximately. 10%. The specific surface area dropped by more than 50%. The water uptake capacity under free swelling conditions showed a slight tendency to lower values especially for samples heated for more than 12 months. The water vapour adsorption ability in contrast drops by 25% already within three months at T = 120°C. These changes are mostly related to the variations in the interlayer cation composition and to smectite aggregation processes. The observed alterations are rather subtle. However, temperatures ⩾ 120°C had a remarkable negative influence on different properties of MX-80.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 3015
Author(s):  
Fethi Kooli ◽  
Souad Rakass ◽  
Yan Liu ◽  
Mostafa Abboudi ◽  
Hicham Oudghiri Hassani ◽  
...  

The effect of the counteranion of hexadecyltrimethylammonium salts on the physico-chemical properties of organoclays was investigated, using a selected natural clay mineral with a cation exchange capacity of 95 meq/100 g. The uptake amount of C16 cations was dependent on the hexadecyltrimethylammonium (C16) salt solution used, the organoclay prepared from C16Br salt solution exhibited a value of 1. 05 mmole/g higher than those prepared from C16Cl and C16OH salt solutions. The basal spacing of these organoclays was in the range of 1.81 nm to 2.10 nm, indicating a similar orientation of the intercalated surfactants, and could indicated that the excess amount of surfactants, above the cation exchange capacity of 0.95 meq/g could be adsorbed on the external surface of the clay mineral sheets. These organoclays were found to be stable in neutral, acidic, and basic media. The thermal stability of these organoclays was carried out using thermogravimetric analysis and in-situ X-ray diffraction (XRD) techniques. The decomposition of the surfactant occurred at a maximum temperature of 240 °C, accompanied with a decrease of the basal spacing value close to 1.42 nm. The application of these organoclays was investigated to remove an acidic dye, eosin. The removal amount was related to the initial used concentrations, the amount of the surfactants contents, and to the preheated temperatures of the organoclays. The removal was found to be endothermic process with a maximum amount of 55 mg of eosin/g of organoclay. The value decreased to 25 mg/g, when the intercalated surfactants were decomposed. The reuse of these organoclays was limited to four regeneration recycles with a reduction of 20 to 30%. However, noticeable reduction between 35% to 50% of the initial efficiency, was achieved after the fifth cycle, depending of the used organoclays.


1976 ◽  
Vol 56 (3) ◽  
pp. 213-221 ◽  
Author(s):  
Y. A. MARTEL ◽  
M. R. LAVERDIERE

The objectives of this work were (1) to determine the relation existing between the organic matter contents of Ap horizons and their respective soil Orders, (Gleysolic and Podzolic), texture, pH and geographic locations in the different thermal regions of Quebec and (2) to determine the role of organic matter and soil texture on the cation exchange properties of the same Ap horizons coming from soils used for forage crops in Quebec. The cation-exchange capacity (CEC), the exchangeable bases and acidity were determined by using 1 N NH4OAC – pH 7. The results showed a variation in the carbon content ranging from 1.4 to 6.9%. The heat units accumulated in each region and the clay contents were correlated with the percentage of carbon and nitrogen. Soil pH and soil Orders (Gleysolic vs. Podzolic) did not seem to affect the organic matter content. The cation-exchange capacity (CEC) ranged from 10.6 to 42.6 meq/100 g soil; 40% of this was attributable to carbon and 32% to clay contents. Simple and multiple regression equations showed that carbon was correlated with the exchangeable acidity, while clay was related to the exchangeable bases. The CEC of organic matter and clay were respectively 161 ± 45 meq/100 g organic matter and 29 ± 6 meq/100 g clay. These values, lower than for Western Canada, reflected the nature of the organic matter that is less developed in Eastern Canada than in the Chernozemic soils; they also showed the effect of the predominant illite mineral found in the clay fractions compared to montmorillonite in Western Canada.


2002 ◽  
Vol 32 (10) ◽  
pp. 1829-1837 ◽  
Author(s):  
J Herbauts ◽  
V Penninckx ◽  
W Gruber ◽  
P Meerts

In a mixed forest stand on an ochreous brown earth in the Belgian Ardennes, pedunculate oak (Quercus robur L.) and European beech (Fagus sylvatica L.) have outwardly decreasing cation concentration profiles in wood. To test if these profiles can be ascribed to endogenous factors or to decreased availability of cations in the soil, radial profiles of water-soluble, exchangeable, and total cations and of cation exchange capacity (CEC) of wood were determined. In both species, [Formula: see text]75% of K is in the water-soluble form so is of little use for dendrochemical monitoring. About 80% of Mg is adsorbed on wood exchange sites. For Ca, 30 (beech) to 60% (oak) of total content cannot be extracted by SrCl2 and is, thus, relatively immobile in wood. Wood CEC decreases from pith to bark in European beech and from pith to outer heartwood in pedunculate oak. Decreasing profiles of exchangeable Ca and Mg in pedunculate oak and exchangeable Ca in European beech are strongly constrained by CEC and, thus, are not related to environmental change. Base cation saturation rate shows no consistent radial change in either species. European beech maintained much higher base cation saturation rate than pedunculate oak, although both species had similar CEC. In conclusion, the results do not provide convincing evidence for a significant change in nutritional status of pedunculate oak and European beech in the Belgian Ardennes due to atmospheric pollution.


Author(s):  
Resman ◽  
Sahta Ginting ◽  
Muhammad Tufaila ◽  
Fransiscus Suramas Rembon ◽  
Halim

The research aimed to determine the effectiveness of compost containing humic and fulvic acids, and pure humic and fulvic acids in increasing of Ultisol soil chemical properties. The research design used a randomized block design (RBD), consisting of 10 treatments, namely K0: 0 g polybag-1, KO1: 500 g polybag-1, KO2: 500 g polybag-1, KO3: 500 g polybag-1, KO4: 500 g polybag-1, KO5: 500 g polybag-1, KO6: 500 g polybag-1, KO7: 500 g of polybags-1, H: 50 g of polybag-1, A: 500 g polybag-1. Each treatment was repeated three times and obtained 30 treatment units. The results showed that pH H2O (K0: 4.49, KO1: 5.64, KO2: 5.47, KO3: 5.43, KO4: 5.51, KO5: 5.39, KO6: 5.48, KO7: 6.17, H: 5.06, F: 5.15), total-N (%) (K0: 0.13, KO1: 0.17, KO2: 0.18, KO3: 0.30, KO4: 0.25, KO5: 0.24, KO6: 0.29, KO7: 0.36, H: 0.16, F: 0.14), organic-C (%) (K0: 1.85, KO1; 2.30, KO2: 2.24, KO3: 2.33, KO4: 2.62, KO5: 2.25, KO6: 2.27, KO7: 2.95, H: 2.32, F: 2.26) , available-P (%) (K0: 2.75, KO1: 3.24, KO2: 3.16, KO3: 3.27, KO4: 3.57, KO5: 3.31, KO6: 3.37, KO7: 3.89, H: 3.10, F: 3.12), exchangeable-Al (me100g-1) (K0: 2.51, KO1: 2.11, KO2: 2.13, KO3: 2.15, KO4: 1.88, KO5: 2.14, KO6: 2.12, KO7: 1.75, H: 2.16, F: 2.17), base saturation (%) (K0: 30.91, KO1: 63.48, KO2: 52.63, KO3: 53.76, KO4: 56.13, KO5: 54.96, KO6: 56.71, KO7: 65.53, H: 39.11, F: 42.76), cation exchange capacity (me100g-1) (K0: 12.76, KO1: 15.64, KO2: 14.86, KO3: 14.35, KO4: 14.13, KO5: 15.01, KO6: 15.50, KO7: 17.94, H: 14.19, F: 13.73). The combined compost treatment of three types of organic matter (Imperata cylindrica + Rice straw + Glincidia sepium) is more effective in increasing the pH, H2O as 37.42%, total-N as 176.92%, Organic-C as 59.46%, available-P as 41.45%, base saturation as 65.53%, cation exchange capacity as 17.94% and exchangeable -Al, Alreduction as 30.28% of ultisol soil. KEY WORDS: compost, humic acid, fulvate, soil chemical, ultisol


Sign in / Sign up

Export Citation Format

Share Document