On modified TDRKN methods for second-order systems of differential equations

2017 ◽  
Vol 95 (1) ◽  
pp. 159-173 ◽  
Author(s):  
Julius O. Ehigie ◽  
Manman Zou ◽  
Xilin Hou ◽  
Xiong You
Author(s):  
Hilbert Frentzen

SYNOPSISFor a certain class of first order systems of differential equations several theorems are derived which give sufficient conditions for an appropriate sesquilinear form to be identically zero on suitable spaces of solutions of the system. As a consequence for second order systems limit-point criteria are obtained which include rather general criteria in the case of second order equations. The method used involves sequences of auxiliary functions and is most expedient for the proof of interval limit-point criteria. The theory is also applicable to second order equations with complex coefficients yielding sufficient conditions for the existence of solutions which are not of integrable square.


Author(s):  
Donal O'Regan

AbstractExistence principles are given for systems of differential equations with reflection of the argument. These are derived using fixed point analysis, specifically the Nonlinear Alternative. Then existence results are deduced for certain classes of first and second order equations with reflection of the argument.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. T171-T186 ◽  
Author(s):  
Kenneth P. Bube ◽  
Tamas Nemeth ◽  
Joseph P. Stefani ◽  
Ray Ergas ◽  
Wei Liu ◽  
...  

We studied second-order wave propagation systems for vertical transversely isotropic (VTI) and tilted transversely isotropic (TTI) acoustic media with variable axes of symmetry that have their shear-wave speeds set to zero. Acoustic TTI systems are commonly used in reverse-time migration, but these second-order systems are susceptible to instablities appearing as nonphysical stationary noise growing linearly in time, particularly in variable-tilt TTI media. We found an explanation of the cause of this phenomenon. The instabilities are not caused only by the numerical schemes; they are inherent to the differential equations. These instabilities are present even in homogeneous VTI media. These instabilities are caused by zero wave speeds at a wide variety of wavenumbers — a direct consequence of setting the shear-wave speeds to zero — coupled with the second time derivative in these systems. Although the second-order isotropic wave equation allows smooth time-growing solutions, a larger class of time-growing solutions exists for the second-order acoustic TI systems, including nonsmooth solutions. Boundary conditions appear to be less effective in controlling these time-growing solutions than they are for the isotropic wave equation. These systems conserve an incomplete energy that does not prevent the instabilities. The corresponding steady-state systems are no longer elliptic differential equations and can have nonsmooth solutions that are related to the instabilities. We started initially with homogeneous VTI media, and then extended these results to heterogeneous variable-tilt TTI media. We also developed a second-order acoustic system for heterogeneous variable-tilt TTI media derived directly from the full-elastic system for heterogeneous variable-tilt TTI media. All second-order systems with a dispersion relation obtained by setting the shear-wave speeds to zero in the elastic dispersion relation allowed these nonphysical time-growing solutions; however, knowing the cause of these instabilities, it may be possible to prevent or control the activation of these solutions.


Sign in / Sign up

Export Citation Format

Share Document