Synthesis of flat-top beam pattern of linear antenna arrays with restricted side lobe level, VSWR and independent nulls using Flower Pollination algorithm

2019 ◽  
Vol 106 (12) ◽  
pp. 1964-1977
Author(s):  
Hemant Patidar ◽  
Gautam Kumar Mahanti ◽  
R Muralidharan
Author(s):  
Anas A. Amaireh ◽  
Asem S. Al-Zoubi ◽  
Nihad I. Dib

In this paper, symmetric scanned linear antenna arrays are synthesized, in order to minimize the side lobe level of the radiation pattern. The feeding current amplitudes are considered as the optimization parameters. Newly proposed optimization algorithms are presented to achieve our target; Antlion Optimization (ALO) and a new hybrid algorithm. Three different examples are illustrated in this paper; 20, 26 and 30 elements scanned linear antenna array. The obtained results prove the effectiveness and the ability of the proposed algorithms to outperform and compete other algorithms like Symbiotic Organisms Search (SOS) and Firefly Algorithm (FA).


Author(s):  
Hemant Patidar ◽  
Gautam Kumar Mahanti ◽  
Ramalingam Muralidharan

This paper deals with the synthesis of flattop and cosecant squared beam patterns using the firefly algorithm which is based on metaheuristics. This synthesis is followed by the correction of the radiation patterns when unfortunate malfunctioning of the individual elements in the array occurs. The necessary attention is given to the recovery process, with due emphasis on reduction of side lobe level, ripple and the reflection coefficient. Simulation in Matlab shows a successful employment of the firefly algorithm in producing voltage excitations of the good elements necessary for the recovered patterns. The performance of the firefly algorithm in failure correction is validated by duly comparing it with a standard benchmark.


2021 ◽  
Vol 10 (2) ◽  
pp. 67-77
Author(s):  
S. I. Abdelrahman ◽  
A. H. Hussein ◽  
A. E. A. Shaalan

Side lobe level reduction is one of the most critical research topics in antenna arrays beamforming as it mitigates the interfering and jamming signals. In this paper, a hybrid combination between the Genetic algorithm (GA) optimization technique and the gauss elimination (GE) equation solving technique is utilized for the introduction of the proposed GA/GE beamforming technique for linear antenna arrays. The proposed technique estimates the optimum excitation coefficients and the non-uniform inter-elements spacing for a specific side lobe (SL) cancellation without disturbing the half power beamwidth (HPBW) of the main beam. Different size Chebychev linear antenna arrays are taken as simulation targets. The simulation results revealed the effectiveness of the proposed technique


Author(s):  
Toan The Tang ◽  
Tran Minh Nguyen ◽  
Giang Truong Vu Bang

This paper proposes a feeding networking to gain low sidelobe levels for microstrip linear antenna arrays. The procedure to design a feeding network using Chebyshev weighting method will be proposed and presented. As a demonstration, a feeding network for 8×1 elements linear array with Chebyshev distribution weights (preset sidelobe level of -25 dB) has been designed. An unequal T-junction power divider has been applied in designing the feeding network to guarantee the output powers the same as Chebyshev weights. The obtained results of the amplitudes at each output port have been validated with theory data. The phases of output signals are almost equal at all ports. The proposed feeding network, therefore, can be a good candidate for constructing a low sidelobe level linear array antenna.


Sign in / Sign up

Export Citation Format

Share Document