op amps
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Marco A. Saif ◽  
Mohamed Dessouky ◽  
Hassan Aboushady
Keyword(s):  

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D.S. Shylu Sam ◽  
P. Sam Paul

Purpose In parallel sampling method, the size of the sampling capacitor is reduced to improve the bandwidth of the ADC. Design/methodology/approach Various low-power techniques for 10-bit 200MS/s pipelined analog-to-digital converter (ADC) are presented. This work comprises two techniques including parallel sampling and switched op-amp sharing technique. Findings This paper aims to study the effect of parallel sampling and switched op-amp sharing techniques on power consumption in pipelined ADC. In switched op-amp sharing technique, the numbers of op-amps used in the stages are reduced. Because of the reduction in the size of capacitors in parallel sampling technique and op-amps in the switched op-amp sharing technique, the power consumption of the proposed pipelined ADC is reduced to a greater extent. Originality/value Simulated the 10-bit 200MS/s pipelined ADC with complementary metal oxide semiconductor process and the simulation results shows a maximum differential non-linearity of +0.31/−0.31 LSB and the maximum integral non-linearity (of +0.74/−0.74 LSB with 62.9 dB SFDR, 55.90 dB SNDR and ENOB of 8.99 bits, respectively, for 18mW power consumption with the supply voltage of 1.8 V.


2021 ◽  
Vol 2 (2) ◽  
pp. 49-57
Author(s):  
Zahra Pezeshki

This article describes the process of design and simulation of a high-swing fully differential telescopic Operational Amplifier (Op-Amp). Due to the Common Gate-Common Source (CG and CS) cascode structure, the gain is very high. To maximize this gain, the load must also be selected such as two current sources. This circuit has the higher voltage in output than current Op-Amps in accordance with desirable characteristics. The loss of power of this operating amplifier are very low and in milliwatts. With use of a power supply of 1.8 V, it achieves a high-swing 1.2 V, a differential gain of 76.333 dB, ω_uGB of 412 MHz, and 50 dB CMRR. This new design through the simulations and analytically shows that the high-swing fully differential telescopic Op-Amp retains its high CMRR even at high frequencies.


2021 ◽  
Vol 11 (1) ◽  
pp. 437
Author(s):  
Muhammad Haseeb Arshad ◽  
Mahmoud Kassas ◽  
Alaa E. Hussein ◽  
Mohammad A. Abido

Over the past decade, chaotic systems have found their immense application in different fields, which has led to various generalized, novel, and modified chaotic systems. In this paper, the general jerk equation is combined with a scaled sine map, which has been approximated in terms of a polynomial using Taylor series expansion for exhibiting chaotic behavior. The paper is based on numerical simulation and experimental verification of the system with four control parameters. The proposed system’s chaotic behavior is verified by calculating different chaotic invariants using MATLAB, such as bifurcation diagram, 2-D attractor, Fourier spectra, correlation dimension, and Maximum Lyapunov Exponent. Experimental verification of the system was carried out using Op-Amps with analog multipliers.


2020 ◽  
Vol 12 (3) ◽  
pp. 168-174
Author(s):  
Rashmi Sahu ◽  
Maitraiyee Konar ◽  
Sudip Kundu

Background: Sensing of biomedical signals is crucial for monitoring of various health conditions. These signals have a very low amplitude (in μV) and a small frequency range (<500 Hz). In the presence of various common-mode interferences, biomedical signals are difficult to detect. Instrumentation amplifiers (INAs) are usually preferred to detect these signals due to their high commonmode rejection ratio (CMRR). Gain accuracy and CMRR are two important parameters associated with any INA. This article, therefore, focuses on the improvement of the gain accuracy and CMRR of a low power INA topology. Objective: The objective of this article is to achieve high gain accuracy and CMRR of low power INA by having high gain operational amplifiers (Op-Amps), which are the building blocks of the INAs. Methods: For the implementation of the Op-Amps and the INAs, the Cadence Virtuoso tool was used. All the designs and implementation were realized in 0.18 μm CMOS technology. Results: Three different Op-Amp topologies namely single-stage differential Op-Amp, folded cascode Op-Amp, and multi-stage Op-Amp were implemented. Using these Op-Amp topologies separately, three Op-Amp-based INAs were realized and compared. The INA designed using the high gain multistage Op-Amp topology of low-frequency gain of 123.89 dB achieves a CMRR of 164.1 dB, with the INA’s gain accuracy as good as 99%, which is the best when compared to the other two INAs realized using the other two Op-Amp topologies implemented. Conclusion: Using very high gain Op-Amps as the building blocks of the INA improves the gain accuracy of the INA and enhances the CMRR of the INA. The three Op-Amp-based INA designed with the multi-stage Op-Amps shows state-of-the-art characteristics as its gain accuracy is 99% and CMRR is as high as 164.1 dB. The power consumed by this INA is 29.25 μW by operating on a power supply of ±0.9V. This makes this INA highly suitable for low power measurement applications.


Sign in / Sign up

Export Citation Format

Share Document