ANTICIPATED AIR POLLUTION TOLERANCE OF SOME PLANT SPECIES CONSIDERED FOR GREEN BELT DEVELOPMENT IN AND AROUND AN INDUSTRIAL/URBAN AREA IN INDIA: AN OVERVIEW

2004 ◽  
Vol 61 (2) ◽  
pp. 125-137 ◽  
Author(s):  
A.S. SHANNIGRAHI * ◽  
T. FUKUSHIMA ◽  
R.C. SHARMA
Author(s):  
Jiban Jyoti Das

Industrialization is an important aspect of a growing economy. However, rapid industrialization has caused many serious impacts on the environment. One such impact is the deteriorating air quality, especially around industries. It is said that afforestation is the best and simplest way for improving the air quality. Also, trees and plants have been increasingly used as filters for dust particles around the home, traffic roads, etc. In scientific studies, it has also been found that trees and plant leaves can be used to assess the ambient air quality by an index called the Air pollution tolerance index. A literature search has been done on the scientific database like Sciencedirect and Researchgate to review the existing knowledge of Air pollution tolerance index and to find the tolerant and sensitive species based on it so that these species can be selectively planted to assess the ambient air quality and also to develop a better green belt around refineries and industries in Assam. The study has reviewed the linkage of the impact of air pollution on leaves of plants and trees through scientific evidence. Through such scientific reviews, the most tolerant species of trees and plants were chosen with the condition that it can grow under the climatic condition of Assam. The recommendation and suggestions of tolerant tree and plant species can be used for specific species plantations for developing green belts around refineries and industries in Assam. The recommendation of sensitive species can be used for monitoring ambient air quality with reference to other standard procedures. KEYWORDS: Air pollution tolerance index, Industries, Air- pollution, Green belt


2019 ◽  
Vol 19 (1) ◽  
pp. 239
Author(s):  
Winifred Uduak Anake ◽  
Jacinta Eigbefoh Eimanehi ◽  
Conrad Asotie Omonhinmin

This study reports a combination of two indices, air pollution tolerance index (APTI) and anticipated performance index (API) as viable tools for selecting suitable plants for pollution abatement program. Leaf samples of 6 plant species; Mangifera indica, Araucaria heterophylla, Elaeis guineensis, Syzygium malaccense, Acacia auriculiformis, and Chrysophyllum albidium were collected from an industrial and academic areas at Ado-Odo, Ota, Nigeria; during the dry season of January to March 2018. Biochemical parameters; leaf-pH, relative leaf water content, total chlorophyll content, and ascorbic acid content were analyzed to compute the APTI values. Combined APTI, botanical and socioeconomic indices were graded to evaluate the API of the different plant species. The APTI for the species ranged between 4.79 and 10.7, ideal for sensitive species category (APTI < 11), and the plants are classified as bio indicators of air pollution. The API indicates Mangifera indica and Syzygium malaccense (API = 4) as good performers while Chrysophyllum albidum is a moderate performer (API = 3). The three tree species were identified as suitable green belt plants and thus valuable additions to the green belt development plant list in tropical Africa.


2020 ◽  
Vol 11 (6) ◽  
pp. 536-541
Author(s):  
Abhay Sharma ◽  
◽  
Satish Kumar Bhardwaj ◽  
L. R. Lakshmikanta Panda ◽  
Abha Sharma ◽  
...  

Anticipated Performance Index (API) is an innovative ecological approach in selecting plant species for reducing air pollution, using Air Pollution Tolerance Index (APTI) and socio-economic parameters. The present study evaluated API of 11 plant species (6 trees and 5 shrubs) for the recommendation of green belt establishment near the national highway expansion region of the Kiratpur-Nerchowk expressway. The scrutiny of the results revealed that the tolerance capacity of plant species along with their performance grade is a justified approach for selecting the most suitable plant species, which can act as sink for air pollution. API on the other hand, can also help to distinguish the sensitive plant species, which can act as bio-monitors. The results showed that among all plant species Leucaena leucocephala and Toona ciliata (API=5) qualify as ‘very good’ performers in green belt development, while Dalbergia sisso (API=4) is a ‘good’ performer. Grewia optiva and Ficus palmata were judged as ‘moderate’ performers (API=3). Whereas, all other remaining investigated trees and shrubs having lesser API values can act as bio-indicators and particularly are very less recommended for green belt establishment. Hence, on the basis of amalgamation of APTI values together with other socio-economic and biological parameters, API significantly is considered as one of the best approaches identified and recommended for long-term refinement of air quality.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1067
Author(s):  
Huong-Thi Bui ◽  
Uuriintuya Odsuren ◽  
Kei-Jung Kwon ◽  
Sang-Yong Kim ◽  
Jong-Cheol Yang ◽  
...  

High concentration of particulate matter (PM) threatens public health and the environment. Increasing traffic in the city is one of the main factors for increased PM in the air. Urban green spaces play an important role in reducing PM. In this study, the leaf surface and in-wax PM (sPM and wPM) accumulation were compared for 11 plant species widely used for landscaping in South Korea. In addition, biochemical characteristics of leaves (ascorbic acid chlorophyll content, leaf pH, and relative water content) were analyzed to determine air pollution tolerance. Plant species suitable for air quality improvement were selected based on their air pollution tolerance index (APTI) and anticipated performance index (API). Results showed a significant difference according to the accumulation of sPM and wPM and the plant species. PM accumulation and APTI showed a positive correlation. Pinus strobus showed the highest PM accumulation and APTI values, while Cercis chinensis showed the lowest. In 11 plants, API was divided into five groups. Pinus densiflora was classified as the best group, while Cornus officinalis and Ligustrum obtusifolium were classified as not recommended.


Sign in / Sign up

Export Citation Format

Share Document