The Frobenius method for complex roots of the indicial equation

Author(s):  
Joseph L. Neuringer
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 317
Author(s):  
Diogo Freitas ◽  
Luiz Guerreiro Lopes ◽  
Fernando Morgado-Dias

Finding arbitrary roots of polynomials is a fundamental problem in various areas of science and engineering. A myriad of methods was suggested to address this problem, such as the sequential Newton’s method and the Durand–Kerner (D–K) simultaneous iterative method. The sequential iterative methods, on the one hand, need to use a deflation procedure in order to compute approximations to all the roots of a given polynomial, which can produce inaccurate results due to the accumulation of rounding errors. On the other hand, the simultaneous iterative methods require good initial guesses to converge. However, Artificial Neural Networks (ANNs) are widely known by their capacity to find complex mappings between the dependent and independent variables. In view of this, this paper aims to determine, based on comparative results, whether ANNs can be used to compute approximations to the real and complex roots of a given polynomial, as an alternative to simultaneous iterative algorithms like the D–K method. Although the results are very encouraging and demonstrate the viability and potentiality of the suggested approach, the ANNs were not able to surpass the accuracy of the D–K method. The results indicated, however, that the use of the approximations computed by the ANNs as the initial guesses for the D–K method can be beneficial to the accuracy of this method.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 169
Author(s):  
Avram Sidi

The secant method is a very effective numerical procedure used for solving nonlinear equations of the form f(x)=0. In a recent work (A. Sidi, Generalization of the secant method for nonlinear equations. Appl. Math. E-Notes, 8:115–123, 2008), we presented a generalization of the secant method that uses only one evaluation of f(x) per iteration, and we provided a local convergence theory for it that concerns real roots. For each integer k, this method generates a sequence {xn} of approximations to a real root of f(x), where, for n≥k, xn+1=xn−f(xn)/pn,k′(xn), pn,k(x) being the polynomial of degree k that interpolates f(x) at xn,xn−1,…,xn−k, the order sk of this method satisfying 1<sk<2. Clearly, when k=1, this method reduces to the secant method with s1=(1+5)/2. In addition, s1<s2<s3<⋯, such that limk→∞sk=2. In this note, we study the application of this method to simple complex roots of a function f(z). We show that the local convergence theory developed for real roots can be extended almost as is to complex roots, provided suitable assumptions and justifications are made. We illustrate the theory with two numerical examples.


Author(s):  
Grzegorz Tytko ◽  
Łukasz Dawidowski

Purpose Discrete eigenvalues occur in eddy current problems in which the solution domain was truncated on its edge. In case of conductive material with a hole, the eigenvalues are complex numbers. Their computation consists of finding complex roots of a complex function that satisfies the electromagnetic interface conditions. The purpose of this paper is to present a method of computing complex eigenvalues that are roots of such a function. Design/methodology/approach The proposed approach involves precise determination of regions in which the roots are found and applying sets of initial points, as well as the Cauchy argument principle to calculate them. Findings The elaborated algorithm was implemented in Matlab and the obtained results were verified using Newton’s method and the fsolve procedure. Both in the case of magnetic and nonmagnetic materials, such a solution was the only one that did not skip any of the eigenvalues, obtaining the results in the shortest time. Originality/value The paper presents a new effective method of locating complex eigenvalues for analytical solutions of eddy current problems containing a conductive material with a hole.


2004 ◽  
Vol 2004 (54) ◽  
pp. 2867-2893
Author(s):  
John Michael Nahay

We will determine the number of powers ofαthat appear with nonzero coefficient in anα-power linear differential resolvent of smallest possible order of a univariate polynomialP(t)whose coefficients lie in an ordinary differential field and whose distinct roots are differentially independent over constants. We will then give an upper bound on the weight of anα-resolvent of smallest possible weight. We will then compute the indicial equation, apparent singularities, and Wronskian of the Cockleα-resolvent of a trinomial and finish with a related determinantal formula.


Author(s):  
S. Brodetsky ◽  
G. Smeal

The only really useful practical method for solving numerical algebraic equations of higher orders, possessing complex roots, is that devised by C. H. Graeffe early in the nineteenth century. When an equation with real coefficients has only one or two pairs of complex roots, the Graeffe process leads to the evaluation of these roots without great labour. If, however, the equation has a number of pairs of complex roots there is considerable difficulty in completing the solution: the moduli of the roots are found easily, but the evaluation of the arguments often leads to long and wearisome calculations. The best method that has yet been suggested for overcoming this difficulty is that by C. Runge (Praxis der Gleichungen, Sammlung Schubert). It consists in making a change in the origin of the Argand diagram by shifting it to some other point on the real axis of the original Argand plane. The new moduli and the old moduli of the complex roots can then be used as bipolar coordinates for deducing the complex roots completely: this also checks the real roots.


1954 ◽  
Vol 61 (9) ◽  
pp. 640
Author(s):  
D. Trifan
Keyword(s):  

2021 ◽  
Vol 31 (02) ◽  
pp. 2150018
Author(s):  
Wentao Huang ◽  
Chengcheng Cao ◽  
Dongping He

In this article, the complex dynamic behavior of a nonlinear aeroelastic airfoil model with cubic nonlinear pitching stiffness is investigated by applying a theoretical method and numerical simulation method. First, through calculating the Jacobian of the nonlinear system at equilibrium, we obtain necessary and sufficient conditions when this system has two classes of degenerated equilibria. They are described as: (1) one pair of purely imaginary roots and one pair of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary roots under nonresonant conditions. Then, with the aid of center manifold and normal form theories, we not only derive the stability conditions of the initial and nonzero equilibria, but also get the explicit expressions of the critical bifurcation lines resulting in static bifurcation and Hopf bifurcation. Specifically, quasi-periodic motions on 2D and 3D tori are found in the neighborhoods of the initial and nonzero equilibria under certain parameter conditions. Finally, the numerical simulations performed by the fourth-order Runge–Kutta method provide a good agreement with the results of theoretical analysis.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 262 ◽  
Author(s):  
Shengfeng Li ◽  
Yi Dong

In this paper, we expound on the hypergeometric series solutions for the second-order non-homogeneous k-hypergeometric differential equation with the polynomial term. The general solutions of this equation are obtained in the form of k-hypergeometric series based on the Frobenius method. Lastly, we employ the result of the theorem to find the solutions of several non-homogeneous k-hypergeometric differential equations.


Sign in / Sign up

Export Citation Format

Share Document