scholarly journals Turbulent length scales and budgets of Reynolds stress-transport for open-channel flows; friction Reynolds numbers (Reτ) = 150, 400 and 1020

Author(s):  
Umair Ahmed ◽  
David Apsley ◽  
Timothy Stallard ◽  
Peter Stansby ◽  
Imran Afgan
1999 ◽  
Vol 121 (3) ◽  
pp. 684-689 ◽  
Author(s):  
Ram Balachandar ◽  
Shyam S. Ramachandran

The results of an experimental investigation of turbulent boundary layers in shallow open channel flows at low Reynolds numbers are presented. The study was aimed at extending the database toward lower values of Reynolds number. The data presented are primarily concerned with the longitudinal mean velocity, turbulent-velocity fluctuations, boundary layer shape parameter and skin friction coefficient for Reynolds numbers based on the momentum thickness (Reθ) ranging from 180 to 480. In this range, the results of the present investigation in shallow open channel flows indicate a lack of dependence of the von Karman constant κ on Reynolds number. The extent to which the mean velocity data overlaps with the log-law decreases with decreasing Reθ. The variation of the strength of the wake with Reθ is different from the trend proposed earlier by Coles.


2019 ◽  
Vol 872 ◽  
pp. 626-664 ◽  
Author(s):  
V. I. Nikora ◽  
T. Stoesser ◽  
S. M. Cameron ◽  
M. Stewart ◽  
K. Papadopoulos ◽  
...  

A theoretically based relationship for the Darcy–Weisbach friction factor $f$ for rough-bed open-channel flows is derived and discussed. The derivation procedure is based on the double averaging (in time and space) of the Navier–Stokes equation followed by repeated integration across the flow. The obtained relationship explicitly shows that the friction factor can be split into at least five additive components, due to: (i) viscous stress; (ii) turbulent stress; (iii) dispersive stress (which in turn can be subdivided into two parts, due to bed roughness and secondary currents); (iv) flow unsteadiness and non-uniformity; and (v) spatial heterogeneity of fluid stresses in a bed-parallel plane. These constitutive components account for the roughness geometry effect and highlight the significance of the turbulent and dispersive stresses in the near-bed region where their values are largest. To explore the potential of the proposed relationship, an extensive data set has been assembled by employing specially designed large-eddy simulations and laboratory experiments for a wide range of Reynolds numbers. Flows over self-affine rough boundaries, which are representative of natural and man-made surfaces, are considered. The data analysis focuses on the effects of roughness geometry (i.e. spectral slope in the bed elevation spectra), relative submergence of roughness elements and flow and roughness Reynolds numbers, all of which are found to be substantial. It is revealed that at sufficiently high Reynolds numbers the roughness-induced and secondary-currents-induced dispersive stresses may play significant roles in generating bed friction, complementing the dominant turbulent stress contribution.


Sign in / Sign up

Export Citation Format

Share Document