Numerical simulation of air entrainment in uniform chute flow

Author(s):  
Benjamin Hohermuth ◽  
Lukas Schmocker ◽  
Robert M. Boes ◽  
David F. Vetsch
2019 ◽  
Author(s):  
ZONGSHI DONG ◽  
JUNXING WANG ◽  
DAVID FLORIAN VETSCH ◽  
ROBERT MICHAEL BOES ◽  
GUANGMING TAN

2016 ◽  
Vol 9 (2) ◽  
pp. 697-730 ◽  
Author(s):  
M. Cerminara ◽  
T. Esposti Ongaro ◽  
L. C. Berselli

Abstract. A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas–particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations for a mixture of gases and solid dispersed particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model, valid for low-concentration regimes (particle volume fraction less than 10−3) and particle Stokes number (St – i.e., the ratio between relaxation time and flow characteristic time) not exceeding about 0.2. The new model, which is called ASHEE (ASH Equilibrium Eulerian), is significantly faster than the N-phase Eulerian model while retaining the capability to describe gas–particle non-equilibrium effects. Direct Numerical Simulation accurately reproduces the dynamics of isotropic, compressible turbulence in subsonic regimes. For gas–particle mixtures, it describes the main features of density fluctuations and the preferential concentration and clustering of particles by turbulence, thus verifying the model reliability and suitability for the numerical simulation of high-Reynolds number and high-temperature regimes in the presence of a dispersed phase. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce the averaged and instantaneous flow properties. In particular, the self-similar Gaussian radial profile and the development of large-scale coherent structures are reproduced, including the rate of turbulent mixing and entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the eruptive mixture in a stratified atmosphere describes some of the important features of turbulent volcanic plumes, including air entrainment, buoyancy reversal and maximum plume height. For very fine particles (St → 0, when non-equilibrium effects are negligible) the model reduces to the so-called dusty-gas model. However, coarse particles partially decouple from the gas phase within eddies (thus modifying the turbulent structure) and preferentially concentrate at the eddy periphery, eventually being lost from the plume margins due to the concurrent effect of gravity. By these mechanisms, gas–particle non-equilibrium processes are able to influence the large-scale behavior of volcanic plumes.


2012 ◽  
Vol 1 (33) ◽  
pp. 49 ◽  
Author(s):  
Panayotis Prinos ◽  
Maria Tsakiri ◽  
Dimitris Souliotis

Wave overtopping and the propagation of the waves on the crest and the landward slope of a coastal dike is investigated numerically. Wave overtopping conditions are simulated using the concept of the Wave Overtopping Simulator (WOS). Two numerical models of the WOS are constructed using the FLUENT 6.0.12 (FLUENT Inc. 2001) and the FLOW 3D 9.4 (FLOW 3D 2010) CFD codes. The former simulates the WOS without accounting for air entrainment while the latter accounts for air entrainment. The unsteady RANS equations, the RNG k-ε turbulence model and the VOF method are solved numerically, for "tracking" the free surface and the head of the "current" from the dike crest to the landward dike slope. The computed results from the two models are compared with each other and also against field measurements and proposed empirical relationships (Van der Meer et al. 2010).


2016 ◽  
Vol 797 ◽  
pp. 60-94 ◽  
Author(s):  
Milad Mortazavi ◽  
Vincent Le Chenadec ◽  
Parviz Moin ◽  
Ali Mani

We present direct numerical simulation (DNS) of a stationary turbulent hydraulic jump with inflow Froude number of 2, Weber number of 1820 and density ratio of 831, consistent with ambient water–air systems, all based on the inlet height and inlet velocity. A non-dissipative geometric volume of fluid (VOF) method is used to track the detailed interactions between turbulent flow structures and the nonlinear interface dynamics. Level set equations are also solved concurrent with VOF in order to calculate the interface curvature and surface tension forces. The mesh resolution is set to resolve a wide range of interfacial scales including the Hinze scale. Calculations are compared against experimental data of void fraction and interfacial scales indicating, reasonable agreement despite a Reynolds number mismatch. Multiple calculations are performed confirming weak sensitivity of low-order statistics and void fraction on the Reynolds number. The presented results provide, for the first time, a comprehensive quantitative data for a wide range of phenomena in a turbulent breaking wave using DNS. These include mean velocity fields, Reynolds stresses, turbulence production and dissipation, velocity spectra and air entrainment data. In addition, we present the energy budget as a function of streamwise location by keeping track of various energy exchange processes in the wake of the jump. The kinetic energy is mostly transferred to pressure work, potential energy and dissipation while surface energy plays a less significant role. Our results indicate that the rate associated with various energy exchange processes peak at different streamwise locations, with exchange to pressure work flux peaking first, followed by potential energy flux and then dissipation. The energy exchange process spans a streamwise length of order ${\sim}10$ jump heights. Furthermore, we report statistics associated with bubble transport downstream of the jump. The bubble formation is found to have a periodic nature. Meaning that the bubbles are generated in patches with a specific frequency associated with the roll-up frequency of the roller at the toe of the jump, with its footprint apparent in the velocity energy spectrum. Our study also provides the ensemble-averaged statistics of the flow which we present in this paper. These results are useful for the development and validation of reduced-order models such as dissipation models in wave dynamics simulations, Reynolds-averaged Navier–Stokes models and air entrainment models.


2015 ◽  
Vol 8 (10) ◽  
pp. 8895-8979
Author(s):  
M. Cerminara ◽  
T. Esposti Ongaro ◽  
L. C. Berselli

Abstract. A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas-particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations (Neri et al., 2003) for a mixture of gases and solid dispersed particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model (Ferry and Balachandar, 2001), valid for low concentration regimes (particle volume fraction less than 10−3) and particles Stokes number (St, i.e., the ratio between their relaxation time and flow characteristic time) not exceeding about 0.2. The new model, which is called ASHEE (ASH Equilibrium Eulerian), is significantly faster than the N-phase Eulerian model while retaining the capability to describe gas-particle non-equilibrium effects. Direct numerical simulation accurately reproduce the dynamics of isotropic, compressible turbulence in subsonic regime. For gas-particle mixtures, it describes the main features of density fluctuations and the preferential concentration and clustering of particles by turbulence, thus verifying the model reliability and suitability for the numerical simulation of high-Reynolds number and high-temperature regimes in presence of a dispersed phase. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce their observed averaged and instantaneous flow properties. In particular, the self-similar Gaussian radial profile and the development of large-scale coherent structures are reproduced, including the rate of turbulent mixing and entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the eruptive mixture in a stratified atmosphere describes some of important features of turbulent volcanic plumes, including air entrainment, buoyancy reversal, and maximum plume height. For very fine particles (St → 0, when non-equilibrium effects are negligible) the model reduces to the so-called dusty-gas model. However, coarse particles partially decouple from the gas phase within eddies (thus modifying the turbulent structure) and preferentially concentrate at the eddy periphery, eventually being lost from the plume margins due to the concurrent effect of gravity. By these mechanisms, gas-particle non-equilibrium processes are able to influence the large-scale behavior of volcanic plumes.


2017 ◽  
Vol 31 (10) ◽  
pp. 435-449 ◽  
Author(s):  
Hang Wan ◽  
Ran Li ◽  
Xunchi Pu ◽  
Hongwei Zhang ◽  
Jingjie Feng

2016 ◽  
Vol 59 (12) ◽  
pp. 1847-1855 ◽  
Author(s):  
ZhongDong Qian ◽  
PengFei Wu ◽  
ZhiWei Guo ◽  
WenXin Huai

Sign in / Sign up

Export Citation Format

Share Document