Direct numerical simulation of a turbulent hydraulic jump: turbulence statistics and air entrainment

2016 ◽  
Vol 797 ◽  
pp. 60-94 ◽  
Author(s):  
Milad Mortazavi ◽  
Vincent Le Chenadec ◽  
Parviz Moin ◽  
Ali Mani

We present direct numerical simulation (DNS) of a stationary turbulent hydraulic jump with inflow Froude number of 2, Weber number of 1820 and density ratio of 831, consistent with ambient water–air systems, all based on the inlet height and inlet velocity. A non-dissipative geometric volume of fluid (VOF) method is used to track the detailed interactions between turbulent flow structures and the nonlinear interface dynamics. Level set equations are also solved concurrent with VOF in order to calculate the interface curvature and surface tension forces. The mesh resolution is set to resolve a wide range of interfacial scales including the Hinze scale. Calculations are compared against experimental data of void fraction and interfacial scales indicating, reasonable agreement despite a Reynolds number mismatch. Multiple calculations are performed confirming weak sensitivity of low-order statistics and void fraction on the Reynolds number. The presented results provide, for the first time, a comprehensive quantitative data for a wide range of phenomena in a turbulent breaking wave using DNS. These include mean velocity fields, Reynolds stresses, turbulence production and dissipation, velocity spectra and air entrainment data. In addition, we present the energy budget as a function of streamwise location by keeping track of various energy exchange processes in the wake of the jump. The kinetic energy is mostly transferred to pressure work, potential energy and dissipation while surface energy plays a less significant role. Our results indicate that the rate associated with various energy exchange processes peak at different streamwise locations, with exchange to pressure work flux peaking first, followed by potential energy flux and then dissipation. The energy exchange process spans a streamwise length of order ${\sim}10$ jump heights. Furthermore, we report statistics associated with bubble transport downstream of the jump. The bubble formation is found to have a periodic nature. Meaning that the bubbles are generated in patches with a specific frequency associated with the roll-up frequency of the roller at the toe of the jump, with its footprint apparent in the velocity energy spectrum. Our study also provides the ensemble-averaged statistics of the flow which we present in this paper. These results are useful for the development and validation of reduced-order models such as dissipation models in wave dynamics simulations, Reynolds-averaged Navier–Stokes models and air entrainment models.

Author(s):  
Alessandro Chiarini ◽  
Maurizio Quadrio

AbstractA direct numerical simulation (DNS) of the incompressible flow around a rectangular cylinder with chord-to-thickness ratio 5:1 (also known as the BARC benchmark) is presented. The work replicates the first DNS of this kind recently presented by Cimarelli et al. (J Wind Eng Ind Aerodyn 174:39–495, 2018), and intends to contribute to a solid numerical benchmark, albeit at a relatively low value of the Reynolds number. The study differentiates from previous work by using an in-house finite-differences solver instead of the finite-volumes toolbox OpenFOAM, and by employing finer spatial discretization and longer temporal average. The main features of the flow are described, and quantitative differences with the existing results are highlighted. The complete set of terms appearing in the budget equation for the components of the Reynolds stress tensor is provided for the first time. The different regions of the flow where production, redistribution and dissipation of each component take place are identified, and the anisotropic and inhomogeneous nature of the flow is discussed. Such information is valuable for the verification and fine-tuning of turbulence models in this complex separating and reattaching flow.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mohit Katragadda ◽  
Nilanjan Chakraborty ◽  
R. S. Cant

A direct numerical simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with a range of different turbulent Reynolds numbers has been used to assess the performance of algebraic flame surface density (FSD) models based on a fractal representation of the flame wrinkling factor. The turbulent Reynolds number Rethas been varied by modifying the Karlovitz number Ka and the Damköhler number Da independently of each other in such a way that the flames remain within the thin reaction zones regime. It has been found that the turbulent Reynolds number and the Karlovitz number both have a significant influence on the fractal dimension, which is found to increase with increasing Retand Ka before reaching an asymptotic value for large values of Retand Ka. A parameterisation of the fractal dimension is presented in which the effects of the Reynolds and the Karlovitz numbers are explicitly taken into account. By contrast, the inner cut-off scale normalised by the Zel’dovich flame thicknessηi/δzdoes not exhibit any significant dependence on Retfor the cases considered here. The performance of several algebraic FSD models has been assessed based on various criteria. Most of the algebraic models show a deterioration in performance with increasing the LES filter width.


2016 ◽  
Vol 30 (8) ◽  
pp. 6727-6737 ◽  
Author(s):  
Cong Xu ◽  
Zhihua Wang ◽  
Wubin Weng ◽  
Kaidi Wan ◽  
Ronald Whiddon ◽  
...  

2001 ◽  
Author(s):  
X. Ai ◽  
B. Q. Li

Abstract Turbulent magnetically flows occur in a wide range of material processing systems involving electrically conducting melts. This paper presents a parallel higher order scheme for the direct numerical simulation of turbulent magnetically driven flows in induction channels. The numerical method is based on the higher order finite difference algorithm, which enjoys the spectral accuracy while minimizing the computational intensity. This, coupled with the parallel computing strategy, provides a very useful means to simulate turbulent flows. The higher order finite difference formulation of magnetically driven flow problems is described in this paper. The details of the parallel algorithm and its implementation for the simulations on parallel machines are discussed. The accuracy and numerical performance of the higher order finite difference scheme are assessed in comparison with the spectral method. The examples of turbulent magnetically driven flows in induction channels and pressure gradient driven flows in regular channels are given, and the computed results are compared with experimental measurements wherever possible.


2015 ◽  
Vol 774 ◽  
pp. 395-415 ◽  
Author(s):  
Myoungkyu Lee ◽  
Robert D. Moser

A direct numerical simulation of incompressible channel flow at a friction Reynolds number ($\mathit{Re}_{{\it\tau}}$) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant ${\it\kappa}=0.384\pm 0.004$. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits $k^{-1}$ dependence over a short range in wavenumber $(k)$. Further, consistent with previous experimental observations, when these spectra are multiplied by $k$ (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the $k^{-1}$ range.


Sign in / Sign up

Export Citation Format

Share Document