Once More on the Equilibrium-Point Hypothesis (λ Model) for Motor Control

1986 ◽  
Vol 18 (1) ◽  
pp. 17-54 ◽  
Author(s):  
Anatol G. Feldman
2008 ◽  
Vol 19 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Mark Latash

Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point HypothesisThis brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of motor synergies. The paper ends with a brief review of the criticisms of the EP-hypothesis and challenges that the hypothesis faces at this time.


1996 ◽  
Vol 39 (2) ◽  
pp. 365-378 ◽  
Author(s):  
Pascal Perrier ◽  
David J. Ostry ◽  
Rafael Laboissière

In this paper, we address a number of issues in speech research in the context of the equilibrium point hypothesis of motor control. The hypothesis suggests that movements arise from shifts in the equilibrium position of the limb or the speech articulator. The equilibrium is a consequence of the interaction of central neural commands, reflex mechanisms, muscle properties, and external loads, but it is under the control of central neural commands. These commands act to shift the equilibrium via centrally specified signals acting at the level of the motoneurone (MN) pool. In the context of a model of sagittal plane jaw and hyoid motion based on the λ version of the equilibrium point hypothesis, we consider the implications of this hypothesis for the notion of articulatory targets. We suggest that simple linear control signals may underlie smooth articulatory trajectories. We explore as well the phenomenon of intra-articulator coarticulation in jaw movement. We suggest that even when no account is taken of upcoming context, that apparent anticipatory changes in movement amplitude and duration may arise due to dynamics. We also present a number of simulations that show in different ways how variability in measured kinematics can arise in spite of constant magnitude speech control signals.


Motor Control ◽  
1998 ◽  
Vol 2 (4) ◽  
pp. 306-313 ◽  
Author(s):  
Israel M. Gelfand ◽  
Mark L. Latash

An adequate language is a prerequisite for progress in any area of science, including movement science. Notions of structural units and synergies and the principle of minimal interaction are revisited, discussed, and illustrated with a few examples from recent studies. Equilibrium-point hypothesis is considered an example of identifying significant variables in the control of a voluntary movement.


Motor Control ◽  
2015 ◽  
Vol 19 (2) ◽  
pp. 142-148 ◽  
Author(s):  
Robert L. Sainburg

The purpose of this commentary is to discuss factors that limit consideration of the equilibrium point hypothesis as a scientific theory. The EPH describes control of motor neuron threshold through the variable lambda, which corresponds to a unique referent configuration for a muscle, joint, or combination of joints. One of the most compelling features of the equilibrium point hypothesis is the integration of posture and movement control into a single mechanism. While the essential core of the hypothesis is based upon spinal circuitry interacting with peripheral mechanics, the proponents have extended the theory to include the higher-level processes that generate lambda, and in doing so, imposed an injunction against the supraspinal nervous system modeling, computing, or predicting dynamics. This limitation contradicts evidence that humans take account of body and environmental dynamics in motor selection, motor control, and motor adaptation processes. A number of unresolved limitations to the EPH have been debated in the literature for many years, including whether muscle resistance to displacement, measured during movement, is adequate to support this form of control, violations in equifinality predictions, spinal circuits that alter the proposed invariant characteristic for muscles, and limitations in the description of how the complexity of spinal circuitry might be integrated to yield a unique and stable equilibrium position for a given motor neuron threshold. In addition, an important empirical limitation of EPH is the measurement of the invariant characteristic, which needs to be done under a constant central state. While there is no question that the EPH is an elegant and generative hypothesis for motor control research, the claim that this hypothesis has reached the status of a scientific theory is premature.


Medicina ◽  
2010 ◽  
Vol 46 (6) ◽  
pp. 382 ◽  
Author(s):  
Mark Latash ◽  
Mindy Levin ◽  
John Scholz ◽  
Gregor Schöner

We describe several infl uential hypotheses in the field of motor control including the equilibrium-point (referent confi guration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent confi guration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypo theses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation.


Motor Control ◽  
1998 ◽  
Vol 2 (3) ◽  
pp. 189-205 ◽  
Author(s):  
Anatol G. Feldman ◽  
David J. Ostry ◽  
Mindy F. Levin ◽  
Paul L. Gribble ◽  
Arnold B. Mitnitski

The λ model of the equihbrium-point hypothesis (Feldman & Levin, 1995) is an approach to motor control which, like physics, is based on a logical system coordinating empirical data. The model has gone through an interesting period. On one hand, several nontrivial predictions of the model have been successfully verified in recent studies. In addition, the explanatory and predictive capacity of the model has been enhanced by its extension to multimuscle and multijoint systems. On the other hand, claims have recently appeared suggesting that the model should be abandoned. The present paper focuses on these claims and concludes that they are unfounded. Much of the experimental data that have been used to reject the model are actually consistent with it.


Neuroscience ◽  
2016 ◽  
Vol 315 ◽  
pp. 150-161 ◽  
Author(s):  
S. Ambike ◽  
D. Mattos ◽  
V.M. Zatsiorsky ◽  
M.L. Latash

2019 ◽  
Vol 121 (6) ◽  
pp. 2083-2087 ◽  
Author(s):  
Cristian Cuadra ◽  
Ali Falaki ◽  
Robert Sainburg ◽  
Fabrice R. Sarlegna ◽  
Mark L. Latash

We tested finger force interdependence and multifinger force-stabilizing synergies in a patient with large-fiber peripheral neuropathy (“deafferented person”). The subject performed a range of tasks involving accurate force production with one finger and with four fingers. In one-finger tasks, nontask fingers showed unintentional force production (enslaving) with an atypical pattern: very large indices for the lateral (index and little) fingers and relatively small indices for the central (middle and ring) fingers. Indices of multifinger synergies stabilizing total force and of anticipatory synergy adjustments in preparation to quick force pulses were similar to those in age-matched control females. During constant force production, removing visual feedback led to a slow force drift to lower values (by ~25% over 15 s). The results support the idea of a neural origin of enslaving and suggest that the patterns observed in the deafferented person were reorganized based on everyday manipulation tasks. The lack of significant changes in the synergy index shows that synergic control can be organized in the absence of somatosensory feedback. We discuss the control of the hand in deafferented persons within the α-model of the equilibrium-point hypothesis and suggest that force drift results from an unintentional drift of the control variables to muscles toward zero values. NEW & NOTEWORTHY We demonstrate atypical patterns of finger enslaving and unchanged force-stabilizing synergies in a person with large-fiber peripheral neuropathy. The results speak strongly in favor of central origin of enslaving and its reorganization based on everyday manipulation tasks. The data show that synergic control can be implemented in the absence of somatosensory feedback. We discuss the control of the hand in deafferented persons within the α-model of the equilibrium-point hypothesis.


Sign in / Sign up

Export Citation Format

Share Document