Root system development in Caucasian clover cv. Monaro and its contribution to seed yield

2001 ◽  
Vol 44 (1) ◽  
pp. 23-29 ◽  
Author(s):  
S. M. Fu ◽  
M. J. Hill ◽  
J. G. Hampton
1996 ◽  
Vol 65 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Yasuhiro IZUMI ◽  
Yasuhiro KONO ◽  
Akira YAMAUCHI ◽  
Morio IIJIMA

Author(s):  
S. Acikbas ◽  
M.A. Ozyazici ◽  
H. Bektas

Background: Plants face different abiotic stresses such as salinity that affect their normal development, growth and survival. Forage pea is an important legume crop for herbage production in ruminants. Its agronomy requires high levels of irrigation and fertilization. This study aimed to evaluate the effect of salinity on seedling root system development in forage pea under semi-hydroponics conditions.Methods: Different treatment of NaCl doses (0, 50, 100, 150, 200, 250 and 300 mM) on root architecture was investigated in two different forage pea cultivars (Livioletta and Ulubatlý) with contrasting root structures under controlled conditions. The experimental design was completely randomized design with three replications and nine plants per replication.Result: Salinity affects root and shoot development differently on these cultivars. Despite the salinity, Livioletta produced more shoot (0.71 g) and root biomass (0.30 g) compared to Ulubatlý (0.52 g and 0.25 g for Root and Shoot biomass, respectively) at 150 mM and all other salinity levels. Livioletta developed a better root system and tolerated salt to a higher dose than Ulubatlý. Understanding root system responses of forage pea cultivars may allow breeding and selecting salinity tolerant cultivars with better rooting potential.


2020 ◽  
Vol 02 (03) ◽  
pp. 35-38
Author(s):  
Kamala Arastun Sadigov ◽  

The presented article provides seed propagation, seedling morphology and growth dynamics, root system development in connection with the introduction of Hippophae rhamnoides L. species found in our natural flora in Absheron. The study found that the species Hippophae rhamnoides L. is well adapted to the soil and climatic conditions of Absheron and can be grown in cultural conditions. Key words: Hippophae rhamnoides L., introdiction, seed, repoduction, morphology, dewelopment, root system


Revista CERES ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 291-295 ◽  
Author(s):  
Fernando Marcelo Chiamolera ◽  
Antonio Baldo Geraldo Martins ◽  
Pedro Luiz Martins Soares ◽  
Tatiana Pagan Loeiro da Cunha-Chiamolera

ABSTRACT Root-knot nematode Meloidogyne enterolobii is the main phytosanitary problem of guava cultivation in Brazil. Among the strategies to manage the problem, the best prospects are in identifying or developing cultivars or rootstocks that are resistant to this nematode. To identify plants with potential as rootstocks for guava, the reaction of araçá (wild guava) to M. enterolobii was assessed in a greenhouse experiment. Seven araçá species were evaluated (Eugenia stipitata, Psidium acutangulum, P. cattleyanum ‘yellow’, P. friedrichsthalianum, P. guajava var. minor, P. guineense, and Psidium sp.). The plants were inoculated with a suspension of 3,000 eggs of M. enterolobii, using eggplant as control treatment. The parameters fresh root mass, number of eggs and second stage juveniles (J2) per root system, the reproduction factor (RF = Pf/Pi), and araçá reaction were determined during the experiment. RF of the araçá species E. stipitata, P. cattleyanum ‘yellow’, and P. friedrichsthalianum was less than one (RP < 1), therefore resistant to M. enterolobii. The araçá trees had good root system development and the susceptible plants showed many root galls, high number of eggs and J2, and Fusarium solani and Rhizoctonia solani root rot. The araçá species, P. cattleyanum ‘yellow’, P. friedrichsthalianum, and E. stipitata are resistant to M. enterolobii and can be tested as potential guava rootstocks.


Root Research ◽  
2013 ◽  
Vol 22 (3) ◽  
pp. 111-118
Author(s):  
Shigenori Morita ◽  
Nobuhito Sekiya ◽  
Jun Abe

2019 ◽  
pp. 1375-1382
Author(s):  
Tulio Martinez Santos ◽  
Edna Maria Bonfim Silva ◽  
Tonny José Araújo da Silva ◽  
Ana Paula Alves Barreto Damasceno

Soil compaction is a big limitation to food production in agriculture. Wood ash is an agro-industrial residue generated by the burning of biomass in boilers for energy production. It can be used as a corrective agent and fertilizer of the soil. In this context, the objective of this study was to evaluate the root system of safflower cultivated under bulk density levels and wood ash doses in dystrophic Oxisol. The experiment was conducted in a greenhouse with a randomized block design under a 5x5 factorial scheme composed of 5 wood ash doses (0, 8, 16, 24, 32 g dm-3) and 5 bulk density levels (1.0, 1.2, 1.4, 1.6, 1.8 Mg m-3) with 4 replicates. The soil was collected from 0-0.20 m depth layer. Later it was incubated with the respective wood ash doses. Each experimental unit consisted of a pot made of three PVC (polyvinyl chloride) rings, in which the layers of 0.1-0.2 m were compacted. At 75 days after emergence, the plants were cut, their roots washed and the volume and dry mass checked. The results were submitted to analysis of variance and subsequent regression test, both at 5% probability. Soil densities negatively influenced the root system development and culture of safflower. Application of wood ash doses of 20 to 24 g dm-3 significantly improved root development of plant.


2011 ◽  
Vol 35 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Mary Anne Sword Sayer ◽  
Shi-Jean Susana Sung ◽  
James D. Haywood

Abstract Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling size, the allocation of root system dry weight to the taproot, and the fraction of fibrous root mass allocated to secondary lateral roots compared with primary lateral roots. It decreased the allocation of root system dry weight to primary lateral roots and led to a distribution of root growth potential that more closely resembled the root growth of naturally sown seedlings. These effects of copper root pruning may benefit longleaf pine establishment. However, because copper root pruning increased competition for cavity growing space among the taproot and fibrous roots, we suggest that recommendations regarding cavity size and seedling quality parameters be tailored for copper-coated cavities.


Sign in / Sign up

Export Citation Format

Share Document