Marine Terraces Reveal Complex Near-Shore Upper-Plate Faulting in the Northern Hikurangi Margin, New Zealand

2020 ◽  
Vol 110 (2) ◽  
pp. 825-849 ◽  
Author(s):  
Nicola J. Litchfield ◽  
Kate J. Clark ◽  
Ursula A. Cochran ◽  
Alan S. Palmer ◽  
Joshu Mountjoy ◽  
...  

ABSTRACT Recent earthquakes involving multiple fault ruptures highlight the need to evaluate complex coastal deformation mechanisms, which are important for understanding plate boundary kinematics and seismic and tsunami hazards. We compare ages and uplift of the youngest Holocene marine terraces at Puatai Beach and Pakarae River mouth (∼10  km apart) in the northern Hikurangi subduction margin to examine whether uplift is the result of subduction earthquakes or upper-plate fault earthquakes. From stepped platform-cliff morphology, we infer uplift during 2–3 earthquakes and calculate an average uplift-per-event of 2.9±0.5  m at Puatai Beach and 2.0±0.5  m at Pakarae River mouth. Radiocarbon ages from the youngest beach deposit shells on each terrace and a tephra coverbed on one terrace constrain the timing of earthquakes to 1770–1710, 1100–910, and 420–250 cal. B.P. at Puatai Beach, and 1490–1290 and 660–530 cal. B.P. at Pakarae River mouth. The ages differ at each site indicating uplift is neither the result of subduction earthquakes nor single upper-plate fault earthquakes. A reinterpretation of new and existing bathymetry and seismic reflection data, combined with dislocation modeling, indicates that near-shore fault segmentation is more complex than previously thought and ruptures likely involve multiple upper-plate faults. Future updates of the New Zealand National Seismic Hazard Model should revise the northern Hikurangi subduction seismic sources so that rupture does not uplift Puatai Beach and Pakarae River mouth and include new near-shore upper-plate faults as multifault sources.

2021 ◽  
Author(s):  
◽  
Callum Skinner

<p>Seismic reflection data reveal thick sediment sequences of Late Cretaceous to Paleogene age in the region northwest of Taranaki Basin. A new stratigraphic framework for latest Cretaceous and Paleogene strata is created based on stacking patterns and stratal termination relationships of seismic reflectors. Sequence-bounding reflectors are tied to petroleum exploration wells, including recently-drilled Romney-1, to assign age and paleoenvironment interpretation. I identify the following sequences: (1) a late Haumurian to Teurian (68 – 56 Ma) aggradational shelf sequence, with at least two regressional events linked to eustatic sea-level falls; (2) a diachronous deepening of the basin that progressed from north to south during the late Waipawan to Heretaungan (53 – 46 Ma); (3) small-scale volcanism at the southern boundary with Taranaki Basin is contemporaneous with this deepening; (4) a prograding delta on Challenger Plateau during the Porangan to Runangan (46 – 35 Ma) that is evidence for tectonic uplift of the basin margins; and (5) an onlapping sequence from latest Runangan to present (35 – 0 Ma) that indicates Challenger Plateau subsided 1,300 m. A revised set of paleogeography maps and generalised stratigraphic chart summarise these observations. The Eocene phase (52-46 Ma) of tectonic subsidence and diffuse volcanism is one of the earliest signs of tectonic activity associated with development of the Cenozoic plate boundary through New Zealand. Petroleum system analysis reveals that southern Aotea Basin is prospective for petroleum exploration, with 3 plays identified in the Late Haumurian to Teurian (79 – 56 Ma) strata, in spite of Romney-1 proving unsuccessful.</p>


2021 ◽  
Author(s):  
◽  
Callum Skinner

<p>Seismic reflection data reveal thick sediment sequences of Late Cretaceous to Paleogene age in the region northwest of Taranaki Basin. A new stratigraphic framework for latest Cretaceous and Paleogene strata is created based on stacking patterns and stratal termination relationships of seismic reflectors. Sequence-bounding reflectors are tied to petroleum exploration wells, including recently-drilled Romney-1, to assign age and paleoenvironment interpretation. I identify the following sequences: (1) a late Haumurian to Teurian (68 – 56 Ma) aggradational shelf sequence, with at least two regressional events linked to eustatic sea-level falls; (2) a diachronous deepening of the basin that progressed from north to south during the late Waipawan to Heretaungan (53 – 46 Ma); (3) small-scale volcanism at the southern boundary with Taranaki Basin is contemporaneous with this deepening; (4) a prograding delta on Challenger Plateau during the Porangan to Runangan (46 – 35 Ma) that is evidence for tectonic uplift of the basin margins; and (5) an onlapping sequence from latest Runangan to present (35 – 0 Ma) that indicates Challenger Plateau subsided 1,300 m. A revised set of paleogeography maps and generalised stratigraphic chart summarise these observations. The Eocene phase (52-46 Ma) of tectonic subsidence and diffuse volcanism is one of the earliest signs of tectonic activity associated with development of the Cenozoic plate boundary through New Zealand. Petroleum system analysis reveals that southern Aotea Basin is prospective for petroleum exploration, with 3 plays identified in the Late Haumurian to Teurian (79 – 56 Ma) strata, in spite of Romney-1 proving unsuccessful.</p>


1989 ◽  
Vol 20 (2) ◽  
pp. 287
Author(s):  
C.D. Cape ◽  
R.M. O'Connor ◽  
J.M. Ravens ◽  
D.J. Woodward

Late Cenozoic deformation along the Australian/Pacific plate boundary is seen in onshore New Zealand as zones characterised by extension- or transcurrent- or contraction-related structures. High-resolution multichannel seismic reflection data were acquired in several of these tectonic zones and successfully reveal the shallow structures within them. Thirty kilometres of dynamite reflection data in the Rangitaiki Plains, eastern Bay of Plenty, define a series of NE-trending normal faults within this extensional back-arc volcanic region. The data cross surface ruptures activated during the 1987 Edgecumbe earthquake. In the southern North Island, a 20 km Mini-Sosie? seismic profile details the Quaternary sedimentation history and reveals the structure of the active strike-slip and thrust fault systems that form the western and eastern edges of the Wairarapa basin, respectively. This basin is considered to sit astride the boundary between a zone of distributed strike-slip faults and an active accretionary prism. In the Nelson area, northwestern South Island, previously unrecognised low-angle thrust faults of Neogene or Quaternary age are seen from Mini-Sosie data to occur at very shallow depths. Crustal shortening here was previously thought to arise from movement on high-angle reverse faults, and the identification of these low-angle faults has prompted a reassessment of that model. A grid of 18 km of Mini-Sosie seismic data from the central eastern South Island delineates Neogene or Quaternary thrust faults in Cenozoic sediments. The thrusts are interpreted as reactivated Early Eocene normal faults, and the thrust fault geometry is dominated by these older structures.


1999 ◽  
Vol 104 (B11) ◽  
pp. 25321-25330 ◽  
Author(s):  
J. Heinemann ◽  
J. Stock ◽  
R. Clayton ◽  
K. Hafner ◽  
S. Cande ◽  
...  

2019 ◽  
Vol 500 (1) ◽  
pp. 115-128 ◽  
Author(s):  
Jacob Geersen ◽  
Andrea Festa ◽  
Francesca Remitti

AbstractThe subduction of large and heterogeneous mass-transport deposits (MTDs) is discussed to modify the structure and physical state of the plate boundary and therewith exert an influence on seismicity in convergent margins. Understanding which subduction-zone architectures and structural boundary conditions favour the subduction of MTDs, primarily deposited in oceanic trenches, is therefore highly significant. We use bathymetric and seismic reflection data from modern convergent margins to show that a large landslide volume and long runout, in concert with thin trench sediments, increase the chances for an MTD to become subducted. In regions where the plate boundary develops within the upper plate or at its base (non-accretionary margins), and in little-sedimented trenches (sediment thickness <2 km), an MTD has the highest potential to become subducted, particularly when characterized by a long runout. On the contrary, in the case of a heavily sedimented trench (sediment thickness >4 km) and short runout, an MTD will only be subducted if the thickness of subducting sediments is higher than the thickness of sediments under the MTD. The results allow identification of convergent margins where MTDs are preferentially subducted and thus potentially alter plate-boundary seismicity.


2009 ◽  
Vol 267 (3-4) ◽  
pp. 156-174 ◽  
Author(s):  
P. Terrinha ◽  
L. Matias ◽  
J. Vicente ◽  
J. Duarte ◽  
J. Luís ◽  
...  

2021 ◽  
Author(s):  
◽  
Jiten Patel

<p>Solander Trough is located offshore and south of Fiordland, New Zealand, adjacent to the geologically young Pacific-Australian plate boundary. Petroleum industry exploration was restricted to the near-shore. This thesis presents the first stratigraphic analysis of Solander Trough south of ~46.5°S, using 2D seismic reflection data acquired and processed onboard the R/V Marcus G. Langseth in 2018 (voyage MGL1803). The only pre-existing high-quality line, which was acquired onboard the R/V Maurice Ewing during voyage EW9601a in 1996, was reprocessed.  The study area is divided into northern and southern sub-basins by Tauru High. Four megasequences and eight sequences are identified in the northern sub-basin (SLN). In the southern sub-basin (SLS), three megasequences and seven sequences are mapped. Biostratigraphy from the Parara-1 exploration well enabled age determination in the northern sub-basin. High resolution (~10 m) swath bathymetry data collected along seismic reflection lines provide insight into modern sedimentary processes.  Solander Trough formed in the Eocene, but most sediment is young (<~15 Ma). Puysegur Ridge formed in the Miocene during subduction initiation and now shelters Solander Trough from the Antarctic Circumpolar Current, which affects depositional architecture. The oldest megasequences, SLN1 and SLS1, relate to normal-faulted basement with irregular relief. An increase in sediment supply from the north created megasquence SLN2, but it is thin and not recognised in the southern sub-basin. Megasequence SLN3 signals reverse reactivation on the Parara Anticline and Tauru High; its equivalent (SLS2) marks the first sediments rapidly deposited in southern Solander Trough, and is also linked in the south to initial growth of Puysegur Ridge. SLN4 is a product of Pliocene-Quaternary reverse reactivation of Solander Anticline, and its correlative, SLS3 in the southern sub-basin, is related to folding and widening of the eastern margin of Puysegur Ridge.</p>


Sign in / Sign up

Export Citation Format

Share Document