High-speed formation of a near-full-density bondline in sinter-bonding below 250°C using 2 µm Cu particles coated with Ag

2020 ◽  
Vol 63 (5) ◽  
pp. 367-380
Author(s):  
Sung Yoon Kim ◽  
Eun Byeol Choi ◽  
Dong-Hyun Joo ◽  
Jong-Hyun Lee
2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Thomas Martens ◽  
M. Laine Mears

In the metal injection molding (MIM) process, fine metal powders are mixed with a binder and injected into molds, similar to plastic injection molding. After molding, the binder is removed from the part, and the compact is sintered to almost full density. Though able to create high-density parts of excellent dimensional control and surface finish, the MIM process is restricted in the size of part that can be produced, due to gravitational deformation during high-temperature sintering and maximum thickness requirements to remove the binding agents in the green state. Larger parts could be made by bonding the green parts to a substrate during sintering; however, a primary obstacle to this approach lies in the sinter shrinkage of the MIM part, which can be up to 20%, meaning that the MIM part shrinks during sintering, while the conventional substrate maintains its dimensions. This behavior would typically inhibit bonding and/or cause cracking and deformation of the MIM part. In this work, we present a structure of micro features molded onto the surface of the MIM part, which bonds, deforms, and allows for shrinkage while bonding to the substrate. The micro features tolerate plastic deformation to permit the shrinkage without causing cracks after the initial bonds are established. In a first series of tests, bond strengths of up to 80% of that of resistance welds have been achieved. This paper describes how the authors developed their proposed method of sinter bonding and how they accomplished effective sinter bonds between MIM parts and solid substrates.


2000 ◽  
Vol 2000.8 (0) ◽  
pp. 53-54
Author(s):  
Atsushi SHIBUTANI ◽  
Takahiro KOMUKAI ◽  
Hirotaka KATO ◽  
Kazuo WASIDA

2007 ◽  
Vol 534-536 ◽  
pp. 249-252
Author(s):  
Hiroyuki Y. Suzuki ◽  
Yuichi Kadono ◽  
Hidenori Kuroki

High-Speed Centrifugal Compaction Process (HCP) is one of slip-using compacting method originally developed for processing of oxide ceramics. In this study, we are going to apply the HCP to ultra-fine (0.1 micron) WC powder. Organic liquid of heptane was chosen as dispersing media to avoid possible oxidation of WC. For slip preparation, addition of sorbitan-monostearate (SMS) dramatically improved state of dispersion. The mixing apparatus also was in consideration. The slips mixed by conventional ball mill or turbula mill were scarcely densified by the HCP. Only the slips mixed by high energy planetary ball mill were packed up to 55% by the HCP, and sintered to almost full density at 1673 K without any sintering aids. This sintered compact marked Vickers hardness of Hv 2750 at maximum.


Author(s):  
Thomas Martens ◽  
Laine Mears

In MIM, fine metal powders are mixed with a binder and injected into molds, similar to plastic injection molding. After molding, the binder is removed from the part, and the compact is sintered to almost full density. The obstacle to sinter bonding a MIM part to a conventional (solid) substrate lies in the sinter shrinkage of the MIM part, which can be up to 20%, meaning that the MIM part shrinks during sintering, while the conventional substrate maintains its dimensions. This behavior would typically inhibit bonding and/or cause cracking and deformation of the MIM part. A structure of micro features molded onto the surface of the MIM part allows for shrinkage while bonding to the substrate. The micro features tolerate certain plastic deformation to permit the shrinkage without causing cracks after the initial bonds are established. In a first series of tests, bond strengths of up to 80% of that of resistance welds have been achieved. This paper describes how the authors developed their proposed method of sinter bonding and how they accomplished effective sinter bonds between MIM parts and solid substrates.


Author(s):  
Alexandre Mégret ◽  
Véronique Vitry ◽  
Fabienne Delaunois

AbstractCemented carbide tools suffer from many issues due to the use of tungsten and cobalt as raw materials. Indeed, those are listed by the European Commission as “critical raw materials” since 2011 and by the US Department of Interior as “critical minerals” in 2018. To remain competitive with the conventional high-speed steels, less performant but cheaper, WC–Co tools can be recycled. In the present paper, a WC–7.5Co powder, recycled by the “Coldstream” process, has been sintered with vacuum sintering. As preliminary experiments have shown that the sinterability of the powder is low, the sintering temperature was set at 1500 °C to achieve full density. In parallel, the influence of ball milling conditions (rotation speed and milling medium) on the reactivity of the recycled powder has been studied in terms of grain size distribution, hardness, and fracture toughness. The optimized milling conditions were found to be 6 h wet milling, leading to a hardness of about 1870 HV30 and a toughness of about 10.5 MPa√m after densification. The recycled powder can thus totally compete with conventional powders, opening avenues for the recycling of cemented carbide tools. Graphical Abstract


1986 ◽  
Author(s):  
Kei Ishii ◽  
Tadao Hayasaka ◽  
Hiroyuki Endoh ◽  
Takao Abe ◽  
Yasuo Kamitsuma

2006 ◽  
Vol 514-516 ◽  
pp. 529-533
Author(s):  
João M.G. Mascarenhas ◽  
Manuela Oliveira ◽  
C. Steven Wright

This paper presents the results of an investigation into the sintering behaviour of three vanadium enriched variants of T42 high-speed steel. Powders were prepared by water atomization with vanadium and carbon contents of 6-8 wt% and 2.2 -2.7 wt%, respectively. These were annealed, die pressed and sintered in vacuum. All three alloys were sintered to full density giving “as –sintered” microstructures comprising globular MC carbides dispersed in a martensitic matrix. Optimum sintering temperatures were in the range 1240 - 1250°C with lower optimum temperatures associated with higher carbon levels. Sintering characteristics are correlated with phase diagrams calculated using ThermoCalc™ software and TCFe2000 database. The implications for the design of sinterable vanadium containing high-speed steels are discussed.


Sign in / Sign up

Export Citation Format

Share Document