The interaction of point defects with dislocations in high purity copper above room temperature. I. Electron irradiation

1976 ◽  
Vol 27 (3-4) ◽  
pp. 191-198 ◽  
Author(s):  
H. M. Simpson ◽  
S. J. Kerkhoff
2016 ◽  
Vol 656 ◽  
pp. 55-66 ◽  
Author(s):  
Yi Huang ◽  
Shima Sabbaghianrad ◽  
Abdulla I. Almazrouee ◽  
Khaled J. Al-Fadhalah ◽  
Saleh N. Alhajeri ◽  
...  

2007 ◽  
Vol 131-133 ◽  
pp. 253-258 ◽  
Author(s):  
A. Carvalho ◽  
R. Jones ◽  
C. Janke ◽  
Sven Öberg ◽  
Patrick R. Briddon

The properties of point defects introduced by low temperature electron irradiation of germanium are investigated by first-principles modeling. Close Frenkel pairs, including the metastable fourfold coordinated defect, are modelled and their stability is discussed. It is found that damage evolution upon annealing below room temperature can be consistently explained with the formation of correlated interstitial-vacancy pairs if the charge-dependent properties of the vacancy and self-interstitial are taken into account. We propose that Frenkel pairs can trap up to two electrons and are responsible for conductivity loss in n-type Ge at low temperatures.


2008 ◽  
Vol 584-586 ◽  
pp. 929-937 ◽  
Author(s):  
Jing Tao Wang ◽  
Yue Zhang ◽  
Jin Qiang Liu

Equal channel angular pressing (ECAP) was conducted at room temperature to a high strain level of ~24 in high purity copper. Tensile testing, Transition Electron Microscopy (TEM) and Electron backscatter diffraction (EBSD) were used to characterize the microstructure and property evolution with the increase of ECAP strain. It was found that tensile yield strength and the stored energy increases upon ECAP processing until a peak reached at 8~12 passes of ECAP, and their saturation was observed at higher ECAP passes. Continuous recrystallization phenomenon in microstructure was observed, where dislocation free crystallites with large misorientation to their surrounding matrix and smaller than the nuclei for discontinuous recrystallization were observed embodied in the matrix of deformed structure with high dislocation density. A two-step process was observed for the formation of these small crystallites, first the condensing of dislocation tangles into a narrow boundary, mostly low angle boundary; And second local migration (in sub-micrometer range) of short grain boundaries, in strong contrast to the dramatic migration of long large angle grain boundaries during discontinuous recrystallization to swallow the deformed matrix, was observed leading to vanish of small subgrains.


Sign in / Sign up

Export Citation Format

Share Document