Tissue enzyme loci for routine genotyping in Norway pout ( Trisopterus esmarkii Nilsson, 1855): Electrophoresis conditions, tissue manifestations, allele designations and basic population genetic parameters

Sarsia ◽  
2004 ◽  
Vol 89 (6) ◽  
pp. 411-422
Author(s):  
P. R Berg ◽  
J Mork
2013 ◽  
Vol 65 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Mirjana Ocokoljic ◽  
Dragica Vilotic ◽  
Mirjana Sijacic-Nikolic

The general population genetic characteristics of cultivated horse chestnut trees excelling in growth, phenotype characteristics, type of inflorescence, productivity and resistance to the leafminer Cameraria ohridella Deschka and Dimic were analyzed in Serbia. The analyzed population genetic parameters point to fundamental differences in the genetic structure among the cultivated populations in Serbia. The study shows the variability in all properties among the populations and inter-individual variability within the populations. The variability and differential characteristics were assessed using statistical parameters, taking into account the satisfactory reflection of the hereditary potential. The assessed differences in the vitality and evolution potential of different populations can determine the methods of horse chestnut gene pool collection, reconstruction and improvement.


Genome ◽  
2010 ◽  
Vol 53 (4) ◽  
pp. 302-310 ◽  
Author(s):  
Doris Herrmann ◽  
Bénédicte N. Poncet ◽  
Stéphanie Manel ◽  
Delphine Rioux ◽  
Ludovic Gielly ◽  
...  

A reliable data set is a fundamental prerequisite for consistent results and conclusions in population genetic studies. However, marker scoring of genetic fingerprints such as amplified fragment length polymorphisms (AFLPs) is a highly subjective procedure, inducing inconsistencies owing to personal or laboratory-specific criteria. We applied two alternative marker selection algorithms, the newly developed script scanAFLP and the recently published AFLPScore, to a large AFLP genome scan to test how population genetic parameters and error rates were affected. These results were confronted with replicated random selections of marker subsets. We show that the newly developed marker selection criteria reduced the mismatch error rate and had a notable influence on estimates of genetic diversity and differentiation. Both effects are likely to influence biological inference. For example, genetic diversity (HS) was 29% lower while genetic differentiation (FST) was 8% higher when applying scanAFLP compared with AFLPScore. Likewise, random selections of markers resulted in substantial deviations of population genetic parameters compared with the data sets including specific selection criteria. These randomly selected marker sets showed surprisingly low variance among replicates. We conclude that stringent marker selection and phenotype calling reduces noise in the data set while retaining patterns of population genetic structure.


Genome ◽  
1996 ◽  
Vol 39 (4) ◽  
pp. 655-663 ◽  
Author(s):  
Rui Lu ◽  
Gerald H. Rank

RAPD analyses were performed on five geographically isolated populations of Megachile rotundata. We used haploid males of the alfalfa leaf-cutting bee, M. rotundata, to overcome the limitation of the dominance of RAPD markers in the determination of population genetic parameters. Sixteen primers gave rise to 130 polymorphic and 31 monomorphic bands. The unbiased estimators calculated in this study include within- and between-population heterozygosity, nucleotide divergence, and genetic distance. The genetic diversity (H = 0.32–0.35) was found to be about 10 times that of previous estimates (H = 0.033) based on allozyme data. Contrary to the data obtained at the protein level, our results suggest that Hymenoptera do not have a lower level of genetic variability at the DNA level compared with other insect species. Regardless of the different assumptions underlying the calculation of heterozygosity, divergence, and genetic distance, all five populations showed a parallel interrelationship for the three parameters. We conclude that RAPD markers are a convenient tool to estimate population genetic variation in haploid M. rotundata and that with an adequate sample size the technique is applicable to the evaluation of divergence in diploid populations. Key words : Megachile rotundata, RAPD, heterozygosity, genetic distance, nucleotide divergence.


2017 ◽  
Vol 38 (4) ◽  
pp. 411-424 ◽  
Author(s):  
Patricia Susana Amavet ◽  
Eva Carolina Rueda ◽  
Juan César Vilardi ◽  
Pablo Siroski ◽  
Alejandro Larriera ◽  
...  

Caiman latirostriswild populations have suffered a drastic reduction in the past, and for that reason, a management and monitoring plan was applied since 1990 in Santa Fe, Argentina in order to achieve population recovery. Although ranching system has a noteworthy success in terms of population size recovering, there is no information about the estimation of population genetic parameters. In particular, the consequence of the bottleneck underwent by these populations has not been assessed. We evaluated variability and genetic structure ofC. latirostrispopulations from Santa Fe through time, using microsatellites and mitochondrial DNA. Population genetic parameters were compared among four sites and three different periods to assess the impact of management activities, and effective population size was estimated in order to detect bottleneck events. We observed an increase in microsatellite variability and low genetic variability in mitochondrial lineages through time. Variability estimates are similar among sites in each sampling period; and there is scarce differentiation among them. The genetic background of each sampling site has changed through time; we assume this fact may be due to entry of individuals of different origin, through management and repopulation activities. Moreover, taking into account the expected heterozygosity and effective population size values, it can be assumed that bottleneck events indeed have occurred in the recent past. Our results suggest that, in addition to increasing population size, genetic variability of the species has been maintained. However, the information is still incomplete, and regular monitoring should continue in order to arrive to solid conclusions.


2020 ◽  
Vol 12 (4) ◽  
pp. 443-455
Author(s):  
Michael Lynch ◽  
Wei-Chin Ho

Abstract The ability to obtain genome-wide sequences of very large numbers of individuals from natural populations raises questions about optimal sampling designs and the limits to extracting information on key population-genetic parameters from temporal-survey data. Methods are introduced for evaluating whether observed temporal fluctuations in allele frequencies are consistent with the hypothesis of random genetic drift, and expressions for the expected sampling variances for the relevant statistics are given in terms of sample sizes and numbers. Estimation methods and aspects of statistical reliability are also presented for the mean and temporal variance of selection coefficients. For nucleotide sites that pass the test of neutrality, the current effective population size can be estimated by a method of moments, and expressions for its sampling variance provide insight into the degree to which such methodology can yield meaningful results under alternative sampling schemes. Finally, some caveats are raised regarding the use of the temporal covariance of allele-frequency change to infer selection. Taken together, these results provide a statistical view of the limits to population-genetic inference in even the simplest case of a closed population.


Ursus ◽  
2014 ◽  
Vol 25 (1) ◽  
pp. 34-43 ◽  
Author(s):  
Alexandros A. Karamanlidis ◽  
Milan Paunović ◽  
Duško Ćirović ◽  
Branko Karapandža ◽  
Tomaž Skrbinšek ◽  
...  

2001 ◽  
Vol 44 (6) ◽  
pp. 589-598
Author(s):  
A. Michaiolowskaja ◽  
N. Mielenz ◽  
L. Schüler ◽  
U. Bergfeld ◽  
U. Müller

Abstract. Title of the paper: Estimation of genetic parameters in the dairy cattle population of Saxonia Population-genetic parameters of the dairy cattle population of Saxonia have been examined. The estimated heritabilities for milk quantity range between 0.35 and 0.42, for fat content between 0.48 and 0.55 and for protein content between 0.52 and 0.57. Higher heritabilities were found for 1st than for subsequent lactations. The genetic correlations between milk quantity and the fat and protein contents were significantly negative for all lactations, likewise between protein content and the protein quantity. The correlation between fat content and fat quantity has been slightly positive (rg=0.08). The analysis of genetic trends revealed a substantial increase in quantity traits, whereas a negative trend has been observed for the milk content merits.


Sign in / Sign up

Export Citation Format

Share Document