closed population
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 30)

H-INDEX

29
(FIVE YEARS 2)

Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Youngmin Kim ◽  
Namsuk Cho

An infectious disease can cause a detrimental effect on national security. A group such as the military called a “closed population”, which is a subset of the general population but has many distinct characteristics, must survive even in the event of a pandemic. Hence, it requires its own distinct solution during a pandemic. In this study, we investigate a simulation analysis for implementing an agent-based model that reflects the characteristics of agents and the environment in a closed population and finds effective control measures for making the closed population functional in the course of disease spreading.


2022 ◽  
Author(s):  
Sewmehon Shimekaw Alemu

Abstract The objective of this paper is to analyse and demonstrate the dynamics of Kala-azar infected group using stochastic model, particularly using simple SIR model with python script over time. The model is used under a closed population with N = 100, transmission rate coefficient β = 0.09, recovery rate γ = 0.03 and initial condition I(0) = 1. In the paper it is discussed how the Kala-azar infected group behaves through simple SIR model. The paper is completed with stochastic SIR model simulation result and shows stochasticity of the dynamics of Kala-azar infected population over time. Fig. 2 below depicts continuous fluctuations which tells us the disease evolves with stochastic nature and shows random process.Subject: Infectious Disease, Global Health, Health Informatics and Statistical and Computational Physics


2021 ◽  
Vol 8 ◽  
Author(s):  
Jaime Bolaños-Jiménez ◽  
Eduardo Morteo ◽  
Christian A. Delfín-Alfonso ◽  
Pedro F. Fruet ◽  
Eduardo R. Secchi ◽  
...  

The presence of transient and temporary individuals in capture-mark-recapture studies may violate the assumption on equal catchability, and thus yield biased estimates. We investigated the effects of residency patterns on population parameters of bottlenose dolphins inhabiting the coastal waters off the Alvarado Lagoon System (ALS), Veracruz, Mexico. We hypothesized that this population is open but there exists a “core community” that behaves as a closed population. Between 2006 and 2010, we conducted 75 photo-identification surveys and recorded 263 dolphin group encounters, in which 231 dolphins were identified. Individuals present during only one season, classified as transients (n = 85), were excluded from the study, and a standardized residency index (IH4) was computed for each dolphin that remained in the sample (n = 146). We used the K-means clustering method to split the sample into groups based on individual (seasonal, annual) IH4 values. These clusters were named as regular residents (RR, n = 55), occasional residents (OR, n = 45), and occasional visitors (OV, n = 46). The cumulative frequency of newly identified individuals displayed an asymptotic trend for the whole sample and all clusters, indicating that most of the individuals present in the study area during the study period were identified. The assumption of demographic closure was tested to define the core community, and was rejected for the whole sample and the OV cluster (p < 0.001 in both cases), indicating that the population is open. The closure assumption was not rejected for RR and OR clusters (χ2 = 6.88, DF = 13, p = 0.91, and χ2 = 17.8, DF = 16, p = 0.33, respectively), indicating that these clusters were demographically closed over the 5-year period. Thus, we defined this aggregation of individuals as the “core community”. The closed population model Mth indicated that the total abundance of this core community was 123 individuals (95% CI: 114–133). Our results provide quantitative evidence of the existence of a core community in open waters of the Gulf of Mexico, and points toward residency pattern as a main driver of population dynamics. These results highlight the importance of considering residency patterns when dealing with heterogeneity in the sample of a highly mobile species.


Author(s):  
Davinia I Perdomo-González ◽  
Antonio Molina ◽  
María J Sánchez-Guerrero ◽  
Ester Bartolomé ◽  
Luis Varona ◽  
...  

Abstract Fertility is a key factor in the economic success of horse farms. However, it has received little attention due to the difficulty of measuring fertility objectively. Since its studbook creation (1912), the Pura Raza Española (PRE) breed has been a closed population and become high in-bred resulting in inbreeding depression (poor phenotypic values). Nevertheless, heterogeneous effects of inbreeding depression have been detected among founders and non-founders. The aims of this study were (1) to analyse the genetic parameters for reproductive traits in mares of the PRE horse breed, and (2) to estimate, for the first time, the inbreeding depression load associated with common ancestors of the breed. A total of 22,799 mares were analysed. Heritability estimates ranged from 0.05 (interval between first and second foaling) to 0.16 (age at first foaling), while inbreeding depression load ratios ranged from 0.06 (parturition efficiency at 6 th foaling) to 0.17 (age at first foaling), for a partial inbreeding coefficient of 10%. While heritability is related to the variability expressed in the population, inbreeding depression load ratios measure the potential variability, whether expressed in the population or not. Most correlations between additive and inbreeding depression load genetic values were significant (P-values <0.001), and of low to moderate magnitude. Our results confirm that individual inbreeding depression loads allow us to select horses that have a genetic value resistant to the deleterious effects of inbreeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefano Palmero ◽  
Elisa Belotti ◽  
Luděk Bufka ◽  
Martin Gahbauer ◽  
Christoph Heibl ◽  
...  

AbstractLarge carnivores promote crucial ecosystem processes but are increasingly threatened by human persecution and habitat destruction. Successful conservation of this guild requires information on long-term population dynamics obtained through demographic surveys. We used camera traps to monitor Eurasian lynx between 2009 and 2018 in a strictly protected area in the Bohemian Forest Ecosystem, located in the core of the distribution of the Bohemian–Bavarian–Austrian lynx population. Thereby, we estimated sex-specific demographic parameters using spatial capture–recapture (SCR) models. Over 48,677 trap nights, we detected 65 unique lynx individuals. Density increased from 0.69 to 1.33 and from 1.09 to 2.35 individuals/100 km2 for open and closed population SCR models, respectively, with corresponding positive population growth rates (mean = 1.06). Estimated yearly sex-specific survival probabilities for the entire monitoring period were high (females 82%, males 90%) and per capita recruitment rate was low (females 12%, males 9%), indicating a low yearly population turnover. We ascertained an average number of recruits of 1.97 and a generation time of 2.64 years when considering resident reproducing females. We confirmed that reproduction in the study area took place successfully every year. Despite the overall increase in local lynx densities, the number of detected family groups remained constant throughout the study period. These results indicated that the strictly protected study area acts as a source for the multi-use landscapes in its surroundings. In this first open population SCR study on lynx, we provide sex-specific demographic parameters that are fundamental information for lynx management in the study area as well as in similar contexts Europe-wide.


2021 ◽  
Vol 8 (7) ◽  
pp. 210625
Author(s):  
Andrew Di Battista ◽  
Christos Nicolaides ◽  
Orestis Georgiou

The extensive use of touchscreens for all manner of human–computer interactions has made them plausible instruments of touch-mediated disease transmission. To that end, we employ stochastic simulations to model human–fomite interaction with a distinct focus on touchscreen interfaces. The timings and frequency of interactions from within a closed population of infectious and susceptible individuals was modelled using a queuing network. A pseudo-reproductive number R was used to compare outcomes under various parameter conditions. We then apply the simulation to a specific real-world scenario; namely that of airport self-check-in and baggage drop. A counterintuitive result was that R decreased with increased touch rates required for touchscreen interaction. Additionally, as one of few parameters to be controlled, the rate of cleaning/disinfecting screens plays an essential role in mitigating R , though alternative technological strategies could prove more effective. The simulation model developed provides a foundation for future advances in more sophisticated fomite disease-transmission modelling.


2021 ◽  
Vol 53 (2) ◽  
pp. 484-509
Author(s):  
Claude Lefèvre ◽  
Matthieu Simon

AbstractThe paper discusses the risk of ruin in insurance coverage of an epidemic in a closed population. The model studied is an extended susceptible–infective–removed (SIR) epidemic model built by Lefèvre and Simon (Methodology Comput. Appl. Prob.22, 2020) as a block-structured Markov process. A fluid component is then introduced to describe the premium amounts received and the care costs reimbursed by the insurance. Our interest is in the risk of collapse of the corresponding reserves of the company. The use of matrix-analytic methods allows us to determine the distribution of ruin time, the probability of ruin, and the final amount of reserves. The case where the reserves are subjected to a Brownian noise is also studied. Finally, some of the results obtained are illustrated for two particular standard SIR epidemic models.


2021 ◽  
Author(s):  
Stefano Palmero ◽  
Elisa Belotti ◽  
Luděk Bufka ◽  
Martin Gahbauer ◽  
Christoph Heibl ◽  
...  

Abstract Large carnivores are crucial for ecosystems but are increasingly threatened by human persecution and habitat destruction. Successful conservation of this guild requires information on long-term population dynamics through the demographic surveys. We camera trapped Eurasian lynx between 2009 and 2018 in two strictly protected areas in the Bohemian Forest Ecosystem, estimating sex-specific demographic parameters using spatial capture-recapture (SCR) models as well as the relative abundance index of its prey species and a mesopredator seeking potential drivers of lynx population dynamics. Over 48 677 trap nights, we detected 65 lynx individuals. Density increased to 1.31 and 2.39 individuals/100 km2 for open and closed population SCR models, respectively, with positive population growth rates. Survival rates were high (females 83%, males 88%) and per capita recruitment was low (females 13%, males 9%), indicating a low yearly population turnover. Reproductive parameters showed successful reproduction. Our results reveal the importance of the study area as host to a saturated population and key source for the potential lynx metapopulation. The observed increasing lynx number is most likely represented by dispersing individuals due to reduced mortality outside the protected areas as the number of reproducing females inside remained constant. In what is the first open population SCR study on lynx, we provide demographic parameters contributing to the development of model-based population viability forecasting and inform lynx management in the study area as well as in similar contexts.


2021 ◽  
Author(s):  
S.A. Trigger ◽  
E.B. Czerniawski ◽  
A.M. Ignatov

Equations for infection spread in a closed population are found in discrete approximation, corresponding to the published statistical data, and in continuous time in the form of delay differential equations. We consider the epidemic as dependent upon four key parameters: the size of population involved, the mean number of dangerous contacts of one infected person per day, the probability to transmit infection due to such contact and the mean duration of disease. In the simplest case of free-running epidemic in an infinite population, the number of infected rises exponentially day by day. Here we show the model for epidemic process in a closed population, constrained by isolation, treatment and so on. The four parameters introduced here have the clear sense and are in association with the well-known concept of reproduction number in the continuous susceptible– infectious–removed, susceptible–exposed–infectious–removed (SIR, SEIR) models. We derive the initial rate of infection spread from the published statistical data for the initial stage of epidemic, when the quarantine measures were absent. On this basis, we can found the corresponding basic reproduction number mentioned above. Our approach allows evaluating the influence of quarantine measures on free pandemic process that leads to the time-dependent rate of infection and suppression of infection. We found a good correspondence of the theory and reliable statistical data. The initially formulated discrete model, describing epidemic course day by day is transferred to differential form. The conditions for saturation of epidemic are found by solving the delay differential equations. They differ essentially from ones in SIR model due to finite delay, typical for COVID-19 The proposed model opens up the possibility to predict the optimal level of social quarantine measures. The model is quite flexible and it can be extended to more complex cases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244537
Author(s):  
Leigh Anne Shafer ◽  
Marcello Nesca ◽  
Robert Balshaw

Objectives The unprecedented worldwide social distancing response to COVID-19 resulted in a quick reversal of escalating case numbers. Recently, local governments globally have begun to relax social distancing regulations. Using the situation in Manitoba, Canada as an example, we estimated the impact that social distancing relaxation may have on the pandemic. Methods We fit a mathematical model to empirically estimated numbers of people infected, recovered, and died from COVID-19 in Manitoba. We then explored the impact of social distancing relaxation on: (a) time until near elimination of COVID-19 (< one case per million), (b) time until peak prevalence, (c) proportion of the population infected within one year, (d) peak prevalence, and (e) deaths within one year. Results Assuming a closed population, near elimination of COVID-19 in Manitoba could have been achieved in 4–6 months (by July or August) if there were no relaxation of social distancing. Relaxing to 15% of pre-COVID effective contacts may extend the local epidemic for more than two years (median 2.1). Relaxation to 50% of pre-COVID effective contacts may result in a peak prevalence of 31–38% of the population, within 3–4 months of initial relaxation. Conclusion Slight relaxation of social distancing may immensely impact the pandemic duration and expected peak prevalence. Only holding the course with respect to social distancing may have resulted in near elimination before Fall of 2020; relaxing social distancing to 15% of pre-COVID-19 contacts will flatten the epidemic curve but greatly extend the duration of the pandemic.


Sign in / Sign up

Export Citation Format

Share Document