Comparison of the neural network model and linear regression model for predicting the intermingled yarn breaking strength and elongation

Author(s):  
İlkan Özkan ◽  
Yusuf Kuvvetli ◽  
Pınar Duru Baykal ◽  
Rızvan Erol
Author(s):  
Mostafa H. Tawfeek ◽  
Karim El-Basyouny

Safety Performance Functions (SPFs) are regression models used to predict the expected number of collisions as a function of various traffic and geometric characteristics. One of the integral components in developing SPFs is the availability of accurate exposure factors, that is, annual average daily traffic (AADT). However, AADTs are not often available for minor roads at rural intersections. This study aims to develop a robust AADT estimation model using a deep neural network. A total of 1,350 rural four-legged, stop-controlled intersections from the Province of Alberta, Canada, were used to train the neural network. The results of the deep neural network model were compared with the traditional estimation method, which uses linear regression. The results indicated that the deep neural network model improved the estimation of minor roads’ AADT by 35% when compared with the traditional method. Furthermore, SPFs developed using linear regression resulted in models with statistically insignificant AADTs on minor roads. Conversely, the SPF developed using the neural network provided a better fit to the data with both AADTs on minor and major roads being statistically significant variables. The findings indicated that the proposed model could enhance the predictive power of the SPF and therefore improve the decision-making process since SPFs are used in all parts of the safety management process.


2021 ◽  
Vol 13 (2) ◽  
pp. 777
Author(s):  
Irena Ištoka Otković ◽  
Aleksandra Deluka-Tibljaš ◽  
Sanja Šurdonja ◽  
Tiziana Campisi

Modeling the behavior of pedestrians is an important tool in the analysis of their behavior and consequently ensuring the safety of pedestrian traffic. Children pedestrians show specific traffic behavior which is related to cognitive development, and the parameters that affect their traffic behavior are very different. The aim of this paper is to develop a model of the children-pedestrian’s speed at a signalized pedestrian crosswalk. For the same set of data collected in the city of Osijek—Croatia, two models were developed based on neural network and multiple linear regression. In both cases the models are based on 300 data of measured children speed at signalized pedestrian crosswalks on primary city roads located near a primary school. As parameters, both models include the selected traffic infrastructure features and children’s characteristics and their movements. The models are validated on data collected on the same type of pedestrian crosswalks, using the same methodology in two other urban environments—the city of Rijeka, Croatia and Enna in Italy. It was shown that the neural network model, developed for Osijek, can be applied with sufficient reliability to the other two cities, while the multiple linear regression model is applicable with relatively satisfactory reliability only in Rijeka. A comparative analysis of the statistical indicators of reliability of these two models showed that better results are achieved by the neural network model.


Author(s):  
Ali Mansourkhaki ◽  
Mohammadjavad Berangi ◽  
Majid Haghiri ◽  
Mohammadreza Haghani

Over the last decades, the number of motor vehicles has increased dramatically in Iran, where different traffic characteristics and urban structures are notable. In the present study, a multilayer perceptron neural network model trained with the Levenberg-Marquardt algorithm was used for predicting the equivalent sound level (LAeq) originating from traffic. Fifty-one samples were collected from different areas of Tehran. Input parameters consisted of total traffic volume per hour, average speed of vehicles, percentage of each category of vehicles, road gradient, density of buildings around the road section and a new parameter named “Building Reflection Factor”. These data were randomly used with 80, 10 and 10 percentiles respectively for training, validation and testing of the Artificial Neural Network (ANN). Results yielded by the ANN model were compared with field measurement data, a proposed regression model and some classical well-known models. Our study indicated that the prediction error of the neural network model was much less than that of the regression model and other classical models. Moreover, a statistical t-test was applied for evaluating the goodness-of-fit of the proposed model and proved that the neural network model is highly efficient in estimating road traffic noise levels.


2016 ◽  
Vol 16 (2) ◽  
pp. 72-83
Author(s):  
Paweł Kaczmarczyk

Abstract The paper presents the results of the testing effectiveness of the integrated model in the short-term forecasting of demand for telephone services in 24-hour cycles. The linear regression model with dichotomous (binary) independent variables was integrated with the feed forward neural network. The regression model was used as a filter of modelled variability of the demand. The neural network was used to model residual variability. The research shows that the integrated model has a higher possibility of approximation and prediction in comparison to the non-integrated linear regression model. The research study was based on data provided by the selected telecommunications network operator. The range of empirical material consisted of hourly counted seconds of outgoing calls and generated by network subscribers in various analytical sections.


Author(s):  
Ke Xu ◽  
Xiaoxiao Liu ◽  
Yiming Lei ◽  
Hong Qi ◽  
Chun Zhang

Abstract Background Appropriate sizing of the implantable collamer lens (ICL) and accurate prediction of the vault are crucial prior to surgery. However, sometimes, the vault value is higher or lower than predicted, necessitating reoperation. The present study aimed to develop neural networks for improving predictions of vault values following ICL implantation based on preoperative biometric data. Methods This retrospective study included 137 eyes of 74 patients with ICLs. Linear regression and neural network analyses were used to examine the relationship between vault values at the 6-month follow-up and preoperative parameters (e.g., ICL characteristics and biometrics). Results Linear regression analysis revealed that vault values were correlated with five variables: ICL size, anterior chamber depth (ACD), angle-to-angle (ATA), white-to-white (WTW), and lens thickness (LT) (adjusted R2 = 0.411). Inclusion of more input variables was associated with better performance in the neural network analysis. The degree of fit when all 11 variables were included in the neural network model was close to 1 (R2 = 0.98). R2 values for the quaternary neural network model enrolling four input variables (ICL size, ATA, ACD, and LT) reached 0.90. Conclusions A neural network equation including the ICL size and biometric parameters of the anterior segment (ATA, ACD, and LT) can be used to predict the postoperative vault, aiding in the selection of an appropriate ICL size and reducing the need for reoperation after surgery.


Sign in / Sign up

Export Citation Format

Share Document