Binocular Vision: Development and Evaluation in the Pre-Verbal Child

1996 ◽  
Vol 46 (1) ◽  
pp. 87-93
Author(s):  
Thomas D. France
2012 ◽  
Vol 57 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Mayumi Oka ◽  
Tsutomu Yamashita ◽  
Shizuka Ono ◽  
Ikumi Kubo ◽  
Akio Tabuchi

2020 ◽  
Author(s):  
Ye Wu ◽  
Zhen Zhang ◽  
Meng Liao ◽  
Qi Li ◽  
XueLin Tang ◽  
...  

Abstract Background: To analyze whether corneal refractive surgery (CRS) is associated with the distribution of different accommodative dysfunctions (ADs) and binocular dysfunctions (BDs) in civilian pilots. A further aim was to analyze the percentages and visual symptoms associated with ADs and/or BDs in this population.Methods: One hundred and eight civilian pilots who underwent CRS from January 2001 to July 2012 (age: 30.33±4.60 years) were enrolled, the mean preoperative SE was −1.51±1.15 D (range: −1.00- −5.00 D). Ninety-nine emmetropic civilian pilots (age: 29.64±3.77 years) who were age- and sex-matched to the CRS group were also enrolled. Refractive status, accommodative and binocular tests of each subject were performed. Visually related symptoms were quantified using the 19-item College of Optometrists in Vision Development Quality of Life (COVD-QOL) questionnaire. The 19 items were summed to obtain visual symptom scores that might indicate visual dysfunctions. The chi-square test was used to analyze differences in percentages of ADs and/or BDs between the CRS and emmetropic groups. The Mann-Whitney U test was used to compare visual symptom scores between pilots with ADs and/or BDs and pilots with normal binocular vision.Results: No significant difference was observed between the CRS and emmetropic groups in the overall prevalence of ADs and BDs (15.7% and 15.2% in the CRS and emmetropic groups, respectively; P=0.185). ADs were present in 4.63% and 3.03% of the CRS and emmetropic group, respectively. BDs were observed in 11.1% and 12.1% of the CRS and emmetropic group, respectively, yielding no significant differences between the groups in the prevalence of ADs or BDs (AD: P=0.094; BD: P=0.105). Pilots with ADs and/or BDs had significantly more visual symptoms than pilots with normal binocular vision (p < 0.001). Conclusions: CRS for civilian pilots with low-moderate myopia might not impact binocular functions. ADs and/or BDs commonly occur in both emmetropia pilots and pilots who undergo CRS, and pilots with ADs and/or BDs are associated with increased symptoms. This study confirms the importance of a full assessment of binocular visual functions in detecting and remedying these dysfunctions in this specific population.


2020 ◽  
Vol 117 (11) ◽  
pp. 6156-6162
Author(s):  
Samuel Eckmann ◽  
Lukas Klimmasch ◽  
Bertram E. Shi ◽  
Jochen Triesch

The development of vision during the first months of life is an active process that comprises the learning of appropriate neural representations and the learning of accurate eye movements. While it has long been suspected that the two learning processes are coupled, there is still no widely accepted theoretical framework describing this joint development. Here, we propose a computational model of the development of active binocular vision to fill this gap. The model is based on a formulation of the active efficient coding theory, which proposes that eye movements as well as stimulus encoding are jointly adapted to maximize the overall coding efficiency. Under healthy conditions, the model self-calibrates to perform accurate vergence and accommodation eye movements. It exploits disparity cues to deduce the direction of defocus, which leads to coordinated vergence and accommodation responses. In a simulated anisometropic case, where the refraction power of the two eyes differs, an amblyopia-like state develops in which the foveal region of one eye is suppressed due to inputs from the other eye. After correcting for refractive errors, the model can only reach healthy performance levels if receptive fields are still plastic, in line with findings on a critical period for binocular vision development. Overall, our model offers a unifying conceptual framework for understanding the development of binocular vision.


2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Muhammad Syauqie ◽  
Sri Handayani Mega Putri

AbstrakPenglihatan binokular secara harfiah berarti penglihatan dengan 2 mata dan dengan adanya penglihatan binokular, kita dapat melihat dunia dalam 3 dimensi meskipun bayangan yang jatuh pada kedua retina merupakan bayangan 2 dimensi. Penglihatan binokular juga memberikan beberapa keuntungan berupa ketajaman visual, kontras sensitivitas, dan lapangan pandang penglihatan yang lebih baik dibandingkan dengan penglihatan monokular. Penglihatan binokular normal memerlukan aksis visual yang jernih, fusi sensoris, dan fusi motoris. Pada manusia, periode sensitif dari perkembangan penglihatan binokular dimulai pada usia sekitar 3 bulan, mencapai puncaknya pada usia 1 hingga 3 tahun, telah berkembang sempurna pada usia 4 tahun dan secara perlahan menurun hingga berhenti pada usia 9 tahun. Berbagai hambatan, berupa hambatan sensoris, motoris,dan sentral, dalam jalur refleks sangat mungkin akan menghambat perkembangan dari penglihatan binokular terutama pada periode sensitif sewaktu 2 tahun pertama kehidupan.Kata kunci: penglihatan binokular, perkembangan, fusi, stereopsisAbstractBinocular vision literally means vision with two eyes and with binocular vision, we can see the world in three dimensions even though the images that fall on both of the retina were the 2-dimensional images. Binocular vision also provide some advantages included improved visual acuity, contrast sensitivity, and visual field compared with monocular vision. Normal binocular vision requires a clear visual axis, sensory fusion, and motoric fusion. In human, the sensitive period of binocular vision development began at around 3 months of age, reaching its peak at the age of 1 to 3 years, had developed completely at the age of 4 years and gradually declined until it stops at the age of 9 years. Various obstacles, such as sensory, motoric, and central obstacles, within the reflex pathway were very likely to inhibited the development of binocular vision, especially in sensitive period during the first 2 years of life.Keywords: binocular vision, development, fusion, stereopsis


1913 ◽  
Vol 76 (1964supp) ◽  
pp. 122-123
Author(s):  
Frederic Campbell
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document