Balance of payments constraints and feasible growth rates: The New Zealand experience∗

1986 ◽  
Vol 20 (1) ◽  
pp. 121-130
Author(s):  
S. Chatterjee ◽  
C. Michelini
2021 ◽  
Author(s):  
◽  
Guyo Duba Gufu

<p>Biological invasion by non-native plant species has often been cited as a cause of native biodiversity loss. While the outcome of species invasions depends on interactions between exotic and resident native species, most studies of biological invasions have focused solely on the direct negative impacts of non-indigenous species on native biota. Although investigations of the role of competition in shaping natural plant communities were dominant in the previous generations and are still popular, more recent experimental research has uncovered the striking influence of facilitation on community dynamics. This thesis aims to investigate competitive and facilitative influence of the invasive South African iceplant (Carpobrotus edulis) on Spinifex sericeus, a native foredune grass species, with particular reference to implications of these interactions for dune restoration in New Zealand. It further explores the growth rates, substrate preferences and mating systems of the exotic and native iceplant taxa found in New Zealand. I begin by briefly outlining the influence of competition and facilitation on natural plant communities with reference to the role of facilitation in eco-restoration. I also give a few examples where exotic species have been found to facilitate native ones. Secondly, a neighbour removal experiment was conducted on coastal sand dunes with the main aim of studying the effects of Carpobrotus edulis on establishment of Spinifex sericeus at the foredune region. Finally, I compared the growth rates of the most widely distributed iceplant taxa in New Zealand in different substrates and the breeding systems of the exotic Carpobrotus.  Examples abound in literature of exotic plant species facilitating native ones especially in forestry. In the neighbour removal study, Carpobrotus edulis protected Spinifex seedlings against storm erosion, sandblasting and salt sprays while at the same time suppressing its leaf production. Suppression of Spinifex leaf production was more pronounced at top of the dune where stress elements is presumably more benign. There was no evidence of allelopathic suppression of Spinifex by C. edulis. Only Carpobrotus chilensis displayed some level of substrate preference by putting on relatively lower biomass in gravel. The exotic Carpobrotus spp. put on greater dry matter content than the native Disphyma australe and the Carpobrotus-x-Disphyma hybrid. The hybrid displayed a faster vegetative growth rate whereas D. australe allocated relatively more biomass to the roots than the shoot. Both Carpobrotus spp. are self compatible and highly capable of intrageneric and intergeneric hybridisation. Mass removal of the existing exotic iceplant stands from foredunes along high energy coasts is not advisable as they serve as useful stabilisers. The intergeneric hybrid is sexually sterile with sparsely spread stolons that could allow co-occurrence with other species and therefore is more suitable for foredune stabilisation. However, more research needs to be conducted on the ecology of the intergeneric hybrid.</p>


1980 ◽  
Vol 31 (3) ◽  
pp. 385 ◽  
Author(s):  
JR Ottaway

In all, 82 adults and about 600 juvenile A tenebrosa were tracked for up to 3 years These intertidal sea anemones were free-living on the rocky coast at Kaikoura, New Zealand Regular measurements of column diameters were taken for 2 years Annual growth increments were small for all sizes of A. tenebrosa observed most increments were in the range -2 to 4 mm of column diameter per year, with the smallest anemones havmg the fastest relative mean growth rates From the growth data, A tenebrosa reaches a column diameter of 40 mm in 8-66 years after settlement From mortality data, the observed adults have a predicted mean longevity of at least 50 years and a predicted maximum longevity of at least 210 years.


1982 ◽  
Vol 85 (3) ◽  
pp. 301 ◽  
Author(s):  
W. P. Snelgar ◽  
T. G. A. Green

2020 ◽  
Author(s):  
Heiko Wittmer ◽  
R Powell ◽  
C King

1. Understanding contributions of cohort effects to variation in population growth of fluctuating populations is of great interest in evolutionary biology and may be critical in contributing towards wildlife and conservation management. Cohort-specific contributions to population growth can be evaluated using age-specific matrix models and associated elasticity analyses. 2. We developed age-specific matrix models for naturally fluctuating populations of stoats Mustela erminea in New Zealand beech forests. Dynamics and productivity of stoat populations in this environment are related to the 3-5 year masting cycle of beech trees and consequent effects on the abundance of rodents. 3. The finite rate of increase (λ) of stoat populations in New Zealand beech forests varied substantially, from 1.98 during seedfall years to 0.58 during post-seedfall years. Predicted mean growth rates for stoat populations in continuous 3-, 4- or 5-year cycles are 0.85, 1.00 and 1.13. The variation in population growth was a consequence of high reproductive success of females during seedfall years combined with low survival and fertility of females of the post-seedfall cohort. 4. Variation in population growth was consistently more sensitive to changes in survival rates both when each matrix was evaluated in isolation and when matrices were linked into cycles. Relative contributions to variation in population growth from survival and fertility, especially in 0-1-year-old stoats, also depend on the year of the cycle and the number of transitional years before a new cycle is initiated. 5. Consequently, management strategies aimed at reducing stoat populations that may be best during one phase of the beech seedfall cycle may not be the most efficient during other phases of the cycle. We suggest that management strategies based on elasticities of vital rates need to consider how population growth rates vary so as to meet appropriate economic and conservation targets. © 2007 The Authors.


2021 ◽  
Author(s):  
◽  
Christopher McDowall

<p>Demographic heterogeneity can have big effects on population dynamics, but for most species we have limited understanding of how and why individuals vary. Variation among individuals is of particular importance for stage-structured populations, and/or where species have ‘complex life-cycles’. This is especially relevant in the case of amphidromous fishes that typically spawn in river mouths and estuaries, develop at sea and return to freshwater to finish development. These fish face strong selection pressures as they negotiate challenges around dispersal and development in order to reproduce successfully. Quantifying variation amongst individual fish can improve understanding of their population dynamics and suggest possible drivers of variation.  I evaluate patterns and sources of variation in demographic attributes of the New Zealand smelt (Retropinna retropinna). R. retropinna is an amphidromous fish that is endemic to New Zealand. While most populations have a sea-going larval stage, a number of landlocked freshwater populations occur, with the largest landlocked population residing in Lake Taupo. Here R. retropinna are presented with a variety of littoral feeding/spawning habitats and environmental conditions that may vary across distinct regions of the lake. In addition, the protracted spawning period for this species in Lake Taupo (occurring over eight months of the year) provides additional scope for seasonal variation to influence demographic attributes of individuals.  I sampled R. retropinna from discrete coastal habitats (beach or river) that were located in the eastern, southern and western regions of the lake. I evaluated patterns of variation in the size-structure, age-structure and morphology of R. retropinna among habitats and/or regions across Lake Taupo. I used otoliths to reconstruct demographic histories (ages, growth rates, hatch dates) of individuals, and used a set of statistical models to infer spatial variation in demographic histories. I found differences in size and age structure between regions, and a temporal effect of hatch date on larval/juvenile growth rates.  In addition, I obtained samples of R. retropinna from a sea-going population at the Hutt river mouth (sampled fish were presumed to be migrating upstream after their development period in Wellington Harbour and/or adjacent coastal environments). While Lake Taupo is large, deep, fresh, oligotrophic and strongly stratified for 8-9 months outside of winter, Wellington Harbour is less than a sixth of the area, shallow, saline, eutrophic and never stratified. These greatly differing environmental conditions led me to expect that these systems’ R. retropinna populations would carry significantly different demographic attributes. I compared the hatching phenology, recruitment age, body morphology, and individual growth histories (reconstructed from otoliths) of R. retropinna sampled from Lake Taupo and Wellington Harbour. I explored the relationships between demographic variation and environmental variation (water temperature, chlorophyll a) for the two systems and found that this additional environmental information could account for much of the seasonal variation in daily otolith increment widths of R. retropinna. My results also suggest that while the two sampled populations likely share similar hatching and spawning phenologies, individuals from Lake Taupo tend to grow more slowly, particularly during winter, and end up smaller than sea-going fish sampled near Wellington. I speculate that these differences reflect variation in food supply (zooplankton may be limited in Lake Taupo over winter).  Overall, my results demonstrate a high degree of variation in morphological and life-history traits within a single species, potentially driven by an interaction between environmental variation and timing of development. My work contributes to a growing body of literature on demographic heterogeneity, and may help to inform the management of landlocked populations of R. retropinna in Lake Taupo.</p>


Sign in / Sign up

Export Citation Format

Share Document