Effect of Silica and Silane Coupling Agent on Mechanical Properties and Failure Modes of Blends of Plasticized Poly (Vinyl Chloride) and Copolyester Thermoplastic Elastomer

1987 ◽  
Vol 12 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Sabu Thomas
2005 ◽  
Vol 13 (2) ◽  
pp. 191-198
Author(s):  
Chaoyang Wang

Multiblock copolymers of poly(2-vinylpyridine) (P2-VP) and polyoxyethylene (PEO) were synthesized by condensing telechelic dihydroxy poly(2-vinylpyridine) (THPVP) and PEO with dichloromethane in the presence of potassium hydroxide. The copolymers were purified by extraction with water and toluene successively and characterized by Fourier Transform Infrared Spectroscopy and nuclear magnetic resonance spectroscopy. The block copolymers behave as good compatibilizers for the blending of epichlorohydrin rubber (CHR) with poly(vinyl chloride) (PVC). The addition of approximately 2-3% block copolymer to the blends evidently improves their mechanical properties and causes the two glass transition temperatures ( Tg) to become closer. The blends with a weight ratio PVC/CHR of 4/6 and the addition of 2-4% block copolymer show mechanical properties consistent with those of a thermoplastic elastomer.


2012 ◽  
Vol 268-270 ◽  
pp. 127-133
Author(s):  
Chen Zheng ◽  
Yan Yan Xu ◽  
Takahiko Kawai ◽  
Shin-ichi Kuroda

In order to improve the properties and the processability of kenaf fiber (KF) / polystyrene (PS) composites, the newly synthesized polymeric silane coupling agent (CA) was utilized and evaluated. KFs were reacted with CA in the melt system and in the solvent system. The composites reinforced by the modified KF showed enhanced mechanical properties compared with those reinforced by the unmodified KF. The effect was especially remarkable when the KF was modified with CA in the solvent system. As the CA content increases, the surface of KF recovered from the composites showed the higher Si / C ratio indicating the good reaction between KF and CA. The modified composites also showed a remarkable reduction in water uptake rate.


2011 ◽  
Vol 675-677 ◽  
pp. 361-364 ◽  
Author(s):  
Yang Zhao ◽  
Jian Hui Qiu ◽  
Hui Xia Feng ◽  
Guo Hong Zhang ◽  
Liang Shao

Rice straw/Poly(butylene succinate)(PBS) composites were prepared by injection molding machine. The influence of content and particle size of rice straw on the mechanical properties of composites indicated that with the increase of rice straw content the tensile strength and fracture strain of the composites was decreased. With the same content of rice straw, the smaller particle size, the more obvious decreased. The influence of dosage of silane coupling agent(SCA) on the composites was studied, the result indicated that with the increase of SCA content, the interface of composite materials significantly improved, the Young’s modulus increased 362% after rice straw was treated by SCA. Thermal analysis showed that the adding of coupling agent didn’t undermine the thermodynamic stability of the composites.


2017 ◽  
Vol 25 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Jiuqiang Song ◽  
Yan Qin ◽  
Jia Chen ◽  
Siwen Qin

In this paper, a continuous glass fiber-reinforced polypropylene prepreg was prepared by fiber treatment with a silane coupling agent and MAH-g-PP resin. Continuous glass fiber-reinforced polypropylene sheets were made from prepreg and PP mats by hot-pressing; they displayed exceptional performance. This paper studies the effects of maleic anhydride grafting on the polypropylene crystallinity and MAH-g-PP content in the prepreg, and the mechanical properties of the composites. The results showed that modifying PP with maleic anhydride decreased the tacticity of the polypropylene molecular chain, which reduced the crystallinity and melting point. An excellent interface formed between the polypropylene and fiber after the glass fiber was treated with a silane coupling agent and MAH-g-PP resin. The mechanical properties of the polymer materials displayed more favorable properties as MAH-g-PP content increased; the ideal MAH-g-PP content was 50%.


Sign in / Sign up

Export Citation Format

Share Document