Effect of Silane Coupling Agent on the Creep Behavior and Mechanical Properties of Carbon Fibers/Acrylonitrile Butadiene Rubber Composites

2018 ◽  
Vol 18 (9) ◽  
pp. 6220-6227 ◽  
Author(s):  
Woong-Ki Choi ◽  
Gil-Young Park ◽  
Byoung-Shuk Kim ◽  
Min-Kang Seo
Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3058
Author(s):  
Sang Yoon Lee ◽  
Jung Soo Kim ◽  
Seung Ho Lim ◽  
Seong Hyun Jang ◽  
Dong Hyun Kim ◽  
...  

The methoxy-type silane coupling agents were synthesized via the modification of the hydrolyzable group and characterized to investigate the change in properties of silica/rubber composites based on the different silane coupling agent structures and the masterbatch fabrication methods. The prepared methoxy-type silane coupling agents exhibited higher reactivity towards hydrolysis compared to the conventional ethoxy-type one which led to the superior silanization to the silica filler surface modified for the reinforcement of styrene-butadiene rubber. The silica/rubber composites based on these methoxy-type silane coupling agents had the characteristics of more developed vulcanization and mechanical properties when fabricated as masterbatch products for tread materials of automobile tire surfaces. In particular, the dimethoxy-type silane coupling agent showed more enhanced rubber composite properties than the trimethoxy-type one, and the environmentally friendly wet masterbatch fabrication process was successfully optimized. The reactivity of the synthesized silane coupling agents toward hydrolysis was investigated by FITR spectroscopic analysis, and the mechanical properties of the prepared silica-reinforced rubber polymers were characterized using a moving die rheometer and a universal testing machine.


2011 ◽  
Vol 284-286 ◽  
pp. 401-410
Author(s):  
Qiong Qiong Liu

Mullite (3A12O3·2SiO2) is an aluminosilicate ceramic of great technological importance. We investigated its potential as fillers in rubber. Mullites untreated or treated with 3% γ-mecapto-propyltrimethoxysilane (A-189) were added into styrene-butadiene rubber (SBR) materials on a laboratory-sized two-roll mill. For comparison, commercial precipitated silica was also used. The effect of these fillers on the cure characteristics, processibility and mechanical properties of SBR at various loadings, ranging from 0 to 50 phr was investigated. The results showed that mullite was a semi-reinforcing filler for SBR materials and exhibits better overall cure properties, lower Mooney viscosity, lower tensile set, better resilience as compared to precipitated silica, while it is inferior to precipitated silica especially with regard to tensile strength, tear strength and abrasion resistance. The presence of the silane coupling agent can enhance mechanical properties of filled SBR vulcanizates to some extent.


2020 ◽  
pp. 089270572093080
Author(s):  
MM Abdel-Aziz ◽  
Mona K Attia

The mechanical properties of γ-irradiated ethylene propylene diene monomer (EPDM)/high styrene-butadiene rubber (HSBR) blends were investigated with special reference to the effects of blend ratio. Among the blends, the one with 80/20 EPDM/HSBR has been found to exhibit the highest tensile, hardness, thermal, and abrasion properties. The effect of γ-irradiation dose on the mechanical properties namely tensile strength and elongation at break was investigated. The effect of silane coupling agent on the mentioned properties of the EPDM/HSBR blend was studied. The results showed that the mechanical and the thermal properties of the γ-irradiated EPDM/HSBR blend improved with the addition of the silane coupling agent due to the increase in the cross-linking density. The inclusion of both the 30 phr fumed silica and N, N- m-phenylenedimaleimide coagent in the 80/20 EPDM/HSBR nanocomposite irradiated to 150 kGy leads to a synergistic effect. Thermogravimetric analysis was carried out to analyze the thermal stability of the nanocomposites. The mechanical properties have been interpreted in terms of the morphology of the blends as attested by scanning electron microscope.


Sign in / Sign up

Export Citation Format

Share Document