ENHANCEMENT OF HEAT TRANSFER IN FINNED TUBE HEAT EXCHANGERS BY WATER INJECTION INTO AIR STREAM

1983 ◽  
Vol 19 (4-6) ◽  
pp. 317-323
Author(s):  
HONORATA WALCZYK
2008 ◽  
Author(s):  
H. Shokouhmand ◽  
M. Moghaddami ◽  
H. Jafari

Fins are widely utilized in many industrial applications for example, fins are used in air cooled finned tube heat exchangers like car radiators, heat rejection devices, refrigeration systems and in condensing central heat exchangers. In this paper, heat transfer inside the fin system composed of a primary rectangular fin with a number of rectangular fins (secondary fins), which are attached on its surface, is modeled and analyzed numerically. The length of the secondary fins decreases linearly from the base of the primary fin to its tip. This modified triangular fin is a kind of improved tree fin networks. The effectiveness of the modified triangular fin is compared with the effectiveness of triangular fin which is calculated analytically. The results show that adding secondary fins increases the effectiveness of triangular fin significantly. Also, it is found that increasing the number of secondary fins in a constant length of primary fin will increase the effectiveness. In addition, by comparing the results it can be concluded that by shortening the length of the primary fin in modified triangular fin, the effectiveness will increase significantly to the contrary of the triangular fin, so smaller heat exchangers can be built by using the modified triangular fin. It is found that in a constant length of primary fin, there is an optimum thickness of secondary fins which maximize the effectiveness of the fin.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 767-775 ◽  
Author(s):  
Djamel Sahel ◽  
Houari Ameur ◽  
Touhami Baki

The baffling technique is well-known for its efficiency in terms of enhancement of heat transfer rates throught channels. However, the baffles insert is accompanied by an increase in the friction factor. This issue remains a great challenge for the designers of heat exchangers. To overcome this issue, we suggest in the present paper a new design of baffles which is here called graded baffle-design. The baffles have an up- or down-graded height along the channel length. This geometry is characterized by two ratios: up-graded baffle ratio and down-graded baffle ratio which are varied from 0-0.08. For a range of Reynolds number varying from 104 to 2 ? 104, the turbulent flow and heat transfer characteristics of a heat exchanger channel are numerically studied by the computer code FLUENT. The obtained results revealed an enhancement in the thermohydraulic performance offered by the new suggested design. For the channel with a down-graded baffle ratio equal to 0.08, the friction factors decreased by 4-8%


1986 ◽  
Vol 108 (1) ◽  
pp. 4-8 ◽  
Author(s):  
T. Kumada ◽  
T. Hirota ◽  
N. Tamura ◽  
R. Ishiguro

Some of the previously reported heat transfer coefficients with evaporation are fairly large as compared with those of a dry body under similar hydrodynamic conditions. In order to clarify this curious enhancement of heat transfer, a method of error evaluation was developed and applied to correct the experimental errors in the recently reported results. An experimental study was also made on turbulent heat and mass transfer of air flowing over a water surface. The present and the previously reported experimental results revealed that the heat transfer coefficient with evaporation agrees with that of a dry body without evaporation, within experimental error, if the erroneous heat inputs into the liquid are properly corrected according to the proposed method.


Author(s):  
Tariq Amin Khan ◽  
Nasir Mehdi Gardezi ◽  
Wei Li ◽  
Yang Zhou ◽  
Zahid Ayub

Abstract The performance on the air side flow is often limited due to its lower heat transfer coefficient. This work is related to numerical simulation to study the significance of employing delta winglets in flat finned and wavy finned-tube heat exchangers. For this purpose, three-dimensional simulation data and a multi-objective genetic algorithm are employed. The angle of attack (α) of delta winglets and Reynolds number varied from 15° to 75° and 500 to 1300, respectively. Employing delta winglets has increased the heat transfer per unit temperature and per unit volume (Z) and the fan power per unit core volume (E) for both flat finned and wavy finned-tube heat exchangers. To achieve a maximum heat transfer enhancement and a minimum friction factor, the optimal values of these parameters (Re and α) are calculated using the Pareto optimal strategy. For this purpose, CFD data, a surrogate model (neural network) and a multi-objective optimization genetic algorithm are combined. Results show that the performance of wavy finned-tube heat exchangers is higher than flat-finned tube heat exchangers which signify the importance of delta winglets in the wavy finned-tube heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document