Phase diagrams of the system of solid solutions Pb1-x(Li1/2La1/2)x(Zr1-yTy)O3in the vicinity of FE-AFE phase stability boundary 3. Effects caused by the coexistence of FE and AFE phases

1995 ◽  
Vol 53 (1) ◽  
pp. 23-37 ◽  
Author(s):  
V. M. Ishchuk ◽  
N. I. Ivashkova ◽  
S. V. Matveev ◽  
V. L. Sobolev ◽  
N. A. Spiridonov ◽  
...  
2012 ◽  
Vol 322 ◽  
pp. 1-9 ◽  
Author(s):  
Z. Nait Abdellah ◽  
Redoune Chegroune ◽  
Mourad Keddam ◽  
B. Bouarour ◽  
L. Haddour ◽  
...  

In the present work, a thermodynamic study was carried out in order to analyze the thermodynamic stability of the and phases in equilibrium with the phase using the calculation of phase diagrams (Calphad) formalism. The two phases and are modelled as substitutional and interstitial solid solutions of boron. The expressions of the chemical potentials ofBandFeare derived in both phases to perform the thermodynamic calculations. A comparison is made between the results provided by the substitutional and interstitial models and good agreement is observed between these two models.


1994 ◽  
Vol 47 (1-2) ◽  
pp. 105-112 ◽  
Author(s):  
V. M. Ishchuk ◽  
N. I. Ivashkova ◽  
E. E. Lakin ◽  
V. L. Sobolev ◽  
N. A. Spiridonov ◽  
...  

2002 ◽  
pp. 67-79
Author(s):  
Yu. B. Bolkhovityanov ◽  
A. S. Yaroshevich ◽  
M. A. Revenko ◽  
E. M. Trukhanov

Author(s):  
Tatiana P. Sushkova ◽  
Aleksandra V. Sheveljuhina ◽  
Galina V. Semenova ◽  
Elena Yu. Proskurina

Проведено исследование фазовых равновесий в тройной системе Sn–As–P в области высокой концентрации летучих компонентов. Методами рентгенофазового и дифференциального термического анализа изучены сплавы политермического разреза SnAs–P. Показано, что растворимость фосфора в моноарсениде олова в направлении этого разреза менее 0.05 мол.д. фосфора. Построена Т-х диаграмма политермического сечения SnAs–Р. Наличие на Т-х диаграмме горизонтали при температуре 827±2 К соответствует реализации в системе Sn–As–P нонвариантного перитектического равновесия L + (d) ↔ b + g , где (d), b и g – трехкомпонентные твердые растворы на основе As1-xPx, SnAs и SnP3 соответственно     REFERENCES Zhang W., Mao J., Li S., Chen Z., Guo Z. Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode // Am. Chem. Soc., 2017, v. 139(9), pp. 3316–3319. https://doi.org/10.1021/jacs.6b12185 Liu S., Zhang H., Xu L., Ma L., Chen X. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries // of Power Sources, 2016, v. 304, pp. 346–353. https://doi.org/10.1016/j.jpowsour.2015.11.056 Zhang W., Pang W., Sencadas V., Guo Z. Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries // Joule, 2018, v. 2(8), pp. 1534–1547. https://doi.org/10.1016/j.joule.2018.04022 Lan D., Wang W., Shi L., Huang Y., Hu L., Li Q. Phase pure Sn4P3 nanotops by solution-liquid-solid growth for anode application in sodium ion batteries // Mater. Chem. A, 2017, v. 5, pp. 5791–5796. https://doi.org/10.1039/C6TA10685D Mogensen R., Maibach J., Naylor A. J., Younesi R. Capacity fading mechanism of tin phosphide anodes in sodium-ion batteries // Dalton Trans., 2018, v. 47, pp. 10752–10758. https://doi.org/10.1039/c8dt01068d Kamali A. R., Fray D. J. Tin-based materials as advanced anode materials for lithium ion batteries: a review // Adv. Mater. Sci., 2011, v. 27, pp. 14–24. URL: http://194.226.210.10/e-journals/RAMS/no12711/kamali.pdf Kovnir K. A., Kolen’ko Y. V., Baranov A. I., Neira I. S., Sobolev A. V., Yoshimura M., Presniakov I. A., Shevelkov A. V. Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure // Journal of Solid State Chemistry, 2009, v. 182(5), pp. 630–639. https://doi.org/10.1016/j.jssc.2008.12.007 Semenova G. V., Kononova E. Yu., Sushkova T. P. Polythermal section Sn4P3 – Sn4As3 // Russian J. of Inorganic Chemistry, 2013, v. 58 (9), pp. 1242–1245. https://doi.org/10.7868/S0044457X13090201 Sushkova T. P, Semenova G. V., Naumov A. V., Proskurina E. Yu. Solid solutions in the system Sn-As-P // Bulletin of VSU. Series: Chemistry. Biology. Pharmacy, 2017, v. 3, pp. 30–36. URL: http://www. vestnik.vsu.ru/pdf/chembio/2017/03/2017-03-05.pdf Semenova G. V., Sushkova T. P, Tarasova L. A., Proskurina E. Yu. Phase equilibria in a Sn-As-P system with a tin concentration less than 50 mol. % // Condensed Matter and Interphases, 2017, v. 19(3), pp. 408–416. https://doi.org/10.17308/kcmf.2017.19/218 Semenova G. V., Sushkova T. P., Zinchenko E. N., Yakunin S. V. Solubility of phosphorus in tin monoarsenide // Condensed Matter and Interphases, 2018, v. 20(4), pp. 644-649. https://doi.org/10.17308/kcmf.2018.20/639 Semenova G. V., Goncharov E. G. Solid Solutions Involving Elements of the Fifth Group. – Мoscow, MFTI Publ., 2000, 160 p. (in Russ.) Okamoto H. Phase diagrams for binary alloys, Second Edition. Materials Park, OH.: ASM International, 2010, 810 р. URL: https://www.asminternational. org/...pdf/c36eeb4e-d6ec-4804-b319-e5b0600ea65d Shirotani , Shiba S., Takemura K., Shimomura О., Yagi Т. Pressure-induced phase transitions of phosphorus-arsenic alloys // Physica B: Condensed Matter, 1993, v. 190, pp. 169–176.  https://doi.org/10.1016/0921-4526(93)90462-F Arita M., Kamo K. Measurement of vapor pressure of phosphorus over Sn-P alloys by dew point method // Jpn. Inst. Met., 1985, v. 26(4), pp. 242–250. https://doi.org/10.2320/matertrans1960.26.242 Zavrazhnov A. Yu., Semenova G. V., Proskurina E. Yu., Sushkova T. P. Phase diagram of the Sn–P system // Thermal Analysis and Calorimetry, 2018, v. 134(1), pp. 475–481. https://doi.orgh/10.1007/s10973-018-7123-0 Gokcen N. A. The As-Sn (Arsenic-Tin) system // Bulletin of alloy phase diagrams, 1990, v. 11(3), pp. 271–278. https://doi.org/10.1007/BF03029298


Sign in / Sign up

Export Citation Format

Share Document