Soret effect for unsteady MHD mixed convective flow in porous medium with viscous dissipation

Author(s):  
Manasi Mishra ◽  
J. P. Panda
2021 ◽  
Author(s):  
V. Seethamahalskshmi ◽  
G. V. Ramana Reddy ◽  
A. Sandhya ◽  
D. Sateesh Kumar

2019 ◽  
Vol 9 (23) ◽  
pp. 5241 ◽  
Author(s):  
Ahmed M. Rashad ◽  
Waqar A. Khan ◽  
Saber M. M. EL-Kabeir ◽  
Amal M. A. EL-Hakiem

The micropolar nanofluids are the potential liquids that enhance the thermophysical features and ability of heat transportation instead of base liquids. Alumina and Titania nanoparticles are mixed in a micropolar fluid. The impact of convective boundary condition is also examined with assisting and opposing flows of both nanofluids. The main objective of this study is to investigate mixed convective flow and heat transfer of micropolar nanofluids across a cylinder in a saturated porous medium. Non-similar variables are used to make the governing equations dimensionless. The local similar and non-similar solutions are obtained by using the Runge-Kutta-Fehlberg method of seventh order. The impacts of various embedded variables on the flow and heat transfer of micropolar nanofluids are investigated and interpreted graphically. It is demonstrated that the skin friction and heat transfer rates depend on solid volume fraction of nanoparticles, Biot number, mixed convection, and material parameters.


2014 ◽  
Vol 3 (4) ◽  
Author(s):  
Ashok Kumar ◽  
Pravez Alam ◽  
S. Kapoor

AbstractThe present manuscript reports a numerical investigation of fully developed mixed convective flow in a parallel channel filled with porous medium. The motion in the channel is induced by external pressure gradient and buoyancy force. The non-Darcy Brinkman-Forchheimer extended model has been used. The Chebyshev spectral collocation method has been used to solve the coupled differential equations numerically. The main emphesize has been given on the influence of Forchheimer number (F), Darcy number (Da) and Rayleigh number (Ra) on velocity and temperature profiles. From this investegation we have found that the velocity aswell as temperature profiles possess point of inflection beyond a threshold value of Ra. The back flow starts near the center of the channel on increasing the value of Ra beyond the threshold value of Ra. The point of inflection on the velocity as well as temperature profile dies out on decreasing of Da. The strength of the velocity is decreases on the increasing of F', it also changes the velocity profile drastically. The point of inflection on the basic flow dies out on increasing of F'.


Sign in / Sign up

Export Citation Format

Share Document