New semi-automated mapping of asbestos cement roofs using rule-based object-based image analysis and Taguchi optimization technique from WorldView-2 images

2016 ◽  
Vol 38 (2) ◽  
pp. 467-491 ◽  
Author(s):  
Mohamed Barakat A. Gibril ◽  
Helmi Z. M. Shafri ◽  
Alireza Hamedianfar
2019 ◽  
Vol 11 (5) ◽  
pp. 503 ◽  
Author(s):  
Sachit Rajbhandari ◽  
Jagannath Aryal ◽  
Jon Osborn ◽  
Arko Lucieer ◽  
Robert Musk

Ontology-driven Geographic Object-Based Image Analysis (O-GEOBIA) contributes to the identification of meaningful objects. In fusing data from multiple sensors, the number of feature variables is increased and object identification becomes a challenging task. We propose a methodological contribution that extends feature variable characterisation. This method is illustrated with a case study in forest-type mapping in Tasmania, Australia. Satellite images, airborne LiDAR (Light Detection and Ranging) and expert photo-interpretation data are fused for feature extraction and classification. Two machine learning algorithms, Random Forest and Boruta, are used to identify important and relevant feature variables. A variogram is used to describe textural and spatial features. Different variogram features are used as input for rule-based classifications. The rule-based classifications employ (i) spectral features, (ii) vegetation indices, (iii) LiDAR, and (iv) variogram features, and resulted in overall classification accuracies of 77.06%, 78.90%, 73.39% and 77.06% respectively. Following data fusion, the use of combined feature variables resulted in a higher classification accuracy (81.65%). Using relevant features extracted from the Boruta algorithm, the classification accuracy is further improved (82.57%). The results demonstrate that the use of relevant variogram features together with spectral and LiDAR features resulted in improved classification accuracy.


Author(s):  
A. Osio ◽  
S. Lefèvre

Abstract. Automated mapping of heterogeneous riparian landscape is of high interest to assess our planet. Still, it remains a challenging task due to the occurrence of flooded vegetation. While both optical and radar images can be exploited, the latter has the advantage of being independent acquisition conditions. However, and despite their popularity, the threshold-based approaches commonly used present some drawbacks such as not taking into account the spatial context and providing mixed pixels within class boundaries. In this study, we propose a novel methodology to avoid such issues by using an object-based image analysis approach on polarimetric radar data. We use our workflow to map the degrading Acacia x. species along lake Nakuru Riparian reserve, and obtain highly-accurate results.


2021 ◽  
Vol 193 (2) ◽  
Author(s):  
Jens Oldeland ◽  
Rasmus Revermann ◽  
Jona Luther-Mosebach ◽  
Tillmann Buttschardt ◽  
Jan R. K. Lehmann

AbstractPlant species that negatively affect their environment by encroachment require constant management and monitoring through field surveys. Drones have been suggested to support field surveyors allowing more accurate mapping with just-in-time aerial imagery. Furthermore, object-based image analysis tools could increase the accuracy of species maps. However, only few studies compare species distribution maps resulting from traditional field surveys and object-based image analysis using drone imagery. We acquired drone imagery for a saltmarsh area (18 ha) on the Hallig Nordstrandischmoor (Germany) with patches of Elymus athericus, a tall grass which encroaches higher parts of saltmarshes. A field survey was conducted afterwards using the drone orthoimagery as a baseline. We used object-based image analysis (OBIA) to segment CIR imagery into polygons which were classified into eight land cover classes. Finally, we compared polygons of the field-based and OBIA-based maps visually and for location, area, and overlap before and after post-processing. OBIA-based classification yielded good results (kappa = 0.937) and agreed in general with the field-based maps (field = 6.29 ha, drone = 6.22 ha with E. athericus dominance). Post-processing revealed 0.31 ha of misclassified polygons, which were often related to water runnels or shadows, leaving 5.91 ha of E. athericus cover. Overlap of both polygon maps was only 70% resulting from many small patches identified where E. athericus was absent. In sum, drones can greatly support field surveys in monitoring of plant species by allowing for accurate species maps and just-in-time captured very-high-resolution imagery.


2021 ◽  
Vol 13 (4) ◽  
pp. 830
Author(s):  
Adam R. Benjamin ◽  
Amr Abd-Elrahman ◽  
Lyn A. Gettys ◽  
Hartwig H. Hochmair ◽  
Kyle Thayer

This study investigates the use of unmanned aerial systems (UAS) mapping for monitoring the efficacy of invasive aquatic vegetation (AV) management on a floating-leaved AV species, Nymphoides cristata (CFH). The study site consists of 48 treatment plots (TPs). Based on six unique flights over two days at three different flight altitudes while using both a multispectral and RGB sensor, accuracy assessment of the final object-based image analysis (OBIA)-derived classified images yielded overall accuracies ranging from 89.6% to 95.4%. The multispectral sensor was significantly more accurate than the RGB sensor at measuring CFH areal coverage within each TP only with the highest multispectral, spatial resolution (2.7 cm/pix at 40 m altitude). When measuring response in the AV community area between the day of treatment and two weeks after treatment, there was no significant difference between the temporal area change from the reference datasets and the area changes derived from either the RGB or multispectral sensor. Thus, water resource managers need to weigh small gains in accuracy from using multispectral sensors against other operational considerations such as the additional processing time due to increased file sizes, higher financial costs for equipment procurements, and longer flight durations in the field when operating multispectral sensors.


2019 ◽  
Vol 11 (10) ◽  
pp. 1181 ◽  
Author(s):  
Norman Kerle ◽  
Markus Gerke ◽  
Sébastien Lefèvre

The 6th biennial conference on object-based image analysis—GEOBIA 2016—took place in September 2016 at the University of Twente in Enschede, The Netherlands (see www [...]


Sign in / Sign up

Export Citation Format

Share Document