Evaluation of remote-sensing-based models of gross primary productivity over Indian sal forest using flux tower and MODIS satellite data

2017 ◽  
Vol 38 (18) ◽  
pp. 5069-5090 ◽  
Author(s):  
T. Watham ◽  
N. R. Patel ◽  
S. P. S. Kushwaha ◽  
V. K. Dadhwal ◽  
A. Senthil Kumar
2014 ◽  
Vol 11 (8) ◽  
pp. 2185-2200 ◽  
Author(s):  
M. Verma ◽  
M. A. Friedl ◽  
A. D. Richardson ◽  
G. Kiely ◽  
A. Cescatti ◽  
...  

Abstract. Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency observations of terrestrial ecosystems and is widely used to monitor and model spatiotemporal variability in ecosystem properties and processes that affect terrestrial GPP. We used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and FLUXNET to assess how well four metrics derived from remotely sensed vegetation indices (hereafter referred to as proxies) and six remote sensing-based models capture spatial and temporal variations in annual GPP. Specifically, we used the FLUXNET La Thuile data set, which includes several times more sites (144) and site years (422) than previous studies have used. Our results show that remotely sensed proxies and modeled GPP are able to capture significant spatial variation in mean annual GPP in every biome except croplands, but that the percentage of explained variance differed substantially across biomes (10–80%). The ability of remotely sensed proxies and models to explain interannual variability in GPP was even more limited. Remotely sensed proxies explained 40–60% of interannual variance in annual GPP in moisture-limited biomes, including grasslands and shrublands. However, none of the models or remotely sensed proxies explained statistically significant amounts of interannual variation in GPP in croplands, evergreen needleleaf forests, or deciduous broadleaf forests. Robust and repeatable characterization of spatiotemporal variability in carbon budgets is critically important and the carbon cycle science community is increasingly relying on remotely sensing data. Our analyses highlight the power of remote sensing-based models, but also provide bounds on the uncertainties associated with these models. Uncertainty in flux tower GPP, and difference between the footprints of MODIS pixels and flux tower measurements are acknowledged as unresolved challenges.


2021 ◽  
Vol 307 ◽  
pp. 108456
Author(s):  
Marcelo Sacardi Biudes ◽  
George Louis Vourlitis ◽  
Maísa Caldas Souza Velasque ◽  
Nadja Gomes Machado ◽  
Victor Hugo de Morais Danelichen ◽  
...  

2017 ◽  
Vol 14 (1) ◽  
pp. 111-129 ◽  
Author(s):  
Caitlin E. Moore ◽  
Jason Beringer ◽  
Bradley Evans ◽  
Lindsay B. Hutley ◽  
Nigel J. Tapper

Abstract. The coexistence of trees and grasses in savanna ecosystems results in marked phenological dynamics that vary spatially and temporally with climate. Australian savannas comprise a complex variety of life forms and phenologies, from evergreen trees to annual/perennial grasses, producing a boom–bust seasonal pattern of productivity that follows the wet–dry seasonal rainfall cycle. As the climate changes into the 21st century, modification to rainfall and temperature regimes in savannas is highly likely. There is a need to link phenology cycles of different species with productivity to understand how the tree–grass relationship may shift in response to climate change. This study investigated the relationship between productivity and phenology for trees and grasses in an Australian tropical savanna. Productivity, estimated from overstory (tree) and understory (grass) eddy covariance flux tower estimates of gross primary productivity (GPP), was compared against 2 years of repeat time-lapse digital photography (phenocams). We explored the phenology–productivity relationship at the ecosystem scale using Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and flux tower GPP. These data were obtained from the Howard Springs OzFlux/Fluxnet site (AU-How) in northern Australia. Two greenness indices were calculated from the phenocam images: the green chromatic coordinate (GCC) and excess green index (ExG). These indices captured the temporal dynamics of the understory (grass) and overstory (trees) phenology and were correlated well with tower GPP for understory (r2 =  0.65 to 0.72) but less so for the overstory (r2 =  0.14 to 0.23). The MODIS enhanced vegetation index (EVI) correlated well with GPP at the ecosystem scale (r2 =  0.70). Lastly, we used GCC and EVI to parameterise a light use efficiency (LUE) model and found it to improve the estimates of GPP for the overstory, understory and ecosystem. We conclude that phenology is an important parameter to consider in estimating GPP from LUE models in savannas and that phenocams can provide important insights into the phenological variability of trees and grasses.


Sign in / Sign up

Export Citation Format

Share Document